
CS 11 Ocaml track: lecture 2

Today:
comments
algebraic data types
more pattern matching
records
polymorphic types
ocaml libraries
exception handling

Previously...

ocaml interactive interpreter
compiling standalone programs
basic data types and operators
let expressions, if expressions
functions
pattern matching
higher-order functions
tail recursion

Comments

Comments start with (* and end with *)
can be nested

No single-line comments
(* This is a comment. *)
(* This is

a (* nested comment *)
*)

Algebraic data types

AKA "union types"
Idea: want a new data type that can be any
one of several different things
Extremely useful!

makes it easy to define complex data types

Pattern matching automatically works with
the structure of these types

Example 1

Example:
type card = Spade | Heart | Diamond | Club

type is a keyword
card is the name of the type you're defining
Spade, Heart, Diamond, and Club are type
constructors

also instances of type card

type names must start with lower-case letter
constructors must start with upper-case letter

Pattern matching

let string_of_card c =
match c with

| Spade -> "Spade"
| Heart -> "Heart"
| Diamond -> "Diamond"
| Club -> "Club"

| means "or" (conceptually)
N.B. first | is optional

Example 2
type number = (* generic numbers *)

Zero
| Integer of int
| Real of float

let float_of_number n =
match n with

Zero -> 0.0
| Integer i -> float_of_int i
| Real f -> f

Example 2 -- alternate
type number = (* generic numbers *)

| Zero (* note leading |)
| Integer of int
| Real of float

let float_of_number n =
match n with
| Zero -> 0.0 (* note leading |)
| Integer i -> float_of_int i
| Real f -> f

Aside: the function keyword
let float_of_number = function

Zero -> 0.0
| Integer i -> float_of_int i
| Real f -> f
Used for pattern matching with a one-argument
function
Just a shortcut
Contrast: fun keyword doesn't match patterns

Example 2
let add n1 n2 = (* add generic numbers *)

match n1, n2 with
Zero, n (* fall through to next case *)

| n, Zero -> n
| Integer i1, Integer i2 -> Integer (i1 + i2)
| Integer i, Real r (* fall through *)
| Real r, Integer i -> Real (r +. float_of_int i)
| Real r1, Real r2 -> Real (r1 +. r2)

Example 3
Abstract integer type:

type integer = (* recursive data type *)
| Zero
| Succ of integer
NOTE: Can't re-use a constructor name (here,
Zero) in the same module

Example 3
let rec add x y =

match x with
| Zero -> y
| Succ x' -> Succ (add x' y)

Recall: when defining a recursive function, need
to use let rec

Defining your own operators
In ocaml, can define your own operators
Note that surrounding operator with () makes it
into a function

(+) ;;

- : int -> int -> int = <fun>
Here, (+) is the function version of the + operator

Defining your own operators
Want a +++ operator for our new integers:

let rec (+++) x y =
match x with

| Zero -> y
| Succ x' -> Succ (x' +++ y)

Recall: when defining a recursive function, need
to use let rec
New operators can only use non-alphanumeric
characters (except for some built-in ones)

Defining your own operators
Why is this broken?

let rec (***) x y =
match x with

| Zero -> Zero
| Succ Zero -> y
| Succ x' -> y +++ (x' *** y)

Defining your own operators
Correct version:

let rec (***) x y =
match x with

| Zero -> Zero
| Succ Zero -> y
| Succ x' -> y +++ (x' *** y)

Records
A record bundles together different pieces of data

with possibly different types
Like a tuple with a name for each position in the
tuple

type named_point = {
name : string ;
x : float;
y : float;

}

Creating records
{ name="foo"; x=10.0; y=20.0 } ;;
- : named_point = {name = "foo"; x = 10.; y = 20.}

NOTE: Type inference correctly determines that
the above expression is a named_point
Can also write this as
{ x=10.0; name="foo"; y=20.0 }
(the fields don't have to be in any order)
However, you can't leave out any of the field
names

Using records
let add_points p1 p2 =

match p1, p2 with
{name=n1; x=x1; y=y1},
{name=n2; x=x2; y=y2} ->
{name=n1^n2; x=x1 +. x2; y=y1 +. y2}

The _ pattern
let add_points p1 p2 =

match p1, p2 with
{name=n1; x=x1; y=y1},
{name=_; x=x2; y=y2} ->
{name=n1; x=x1 +. x2; y=y1 +. y2}

_ in patterns means "don't care"
ignores value in that position

Polymorphic types
Consider this function:

let rec list_length lst =
match lst with

| [] -> 0
| (h :: t) -> 1 + list_length t
What's the type of list_length?

val list_length : 'a list -> int = <fun>

Polymorphic types
What's the type of list_length?

val list_length : 'a list -> int = <fun>
This is a polymorphic type
Same type for lists of ints, lists of floats, etc.

list_length [1;2;3;4;5] 5
list_length ["foo"; "bar"; "baz"] 3

However, list elements must all be of same type
How do we define a type like that?

Polymorphic types
Let's define our own list type:

type 'a our_list =
| Nil
| Cons of 'a * 'a our_list

'a says that this is a polymorphic type
Note: tuple types are printed with * e.g.

(10, "foo") ;;
- : int * string = (10, "foo")

Polymorphic types
Let's use our new type:

let rec list_length our_lst =
match our_lst with

| Nil -> 0
| Cons (h, t) -> 1 + list_length t

Note on the libraries
There is a library function called List.length
Lives in the List module
Documented on www.ocaml.org web site
You should browse through the standard libraries:

Pervasives (built-in)
List
Array
Hashtbl
Printf

Note on the libraries
You don't have to have an "import" statement to
use library functions

List.length [1;2;3;4;5]
- : int = 5

If you don't want to type List. all the time you can
do

open List
but I recommend against it.

Exception handling
Ocaml includes a simple and effective exception
handling system
ML language one of the first ones in which
exception handling was incorporated
New keywords:

raise
try
with
exception

Example
let rec find x lst =

match lst with
| [] -> raise (Failure "not found")
| h :: t -> if x = h then x else find x t

;;
val find : 'a -> 'a list -> 'a = <fun>

Example
find 1 [1;2;3;4;5];;
- : int = 1
find 0 [1;2;3;4;5];;
Exception: Failure "not found".
Failure ("not found");;
- : exn = Failure "not found"

exception
Exceptions have type exn
Like an extensible union type
Can add new constructors using the exception
keyword:

exception Bad of string ;;
exception Bad of string

Recall: constructor must have first letter
capitalized

raise
Raise exceptions using the keyword raise:

raise (Bad "this is really whacked!");;
Exception: Bad "this is really whacked!".

try/with (1)
Catch exceptions in a try/with statement:

try
raise (Bad "this is really whacked!")

with (Bad s) -> s ;;
- : string = "this is really whacked!"

try/with (2)
Catching multiple exceptions:

try
raise (Bad "this is really whacked!")

with e ->
match e with

(Bad s) -> s
| _ -> "whatever" ;;

- : string = "this is really whacked!"

try/with (3)
Catching multiple exceptions, alternate way:

try
raise (Bad "this is really whacked!")

with (Bad s) -> s
| (Failure f) -> f
| _ -> "whatever" ;;

- : string = "this is really whacked!"

try/with (4)
Slight variation:

try
raise (Bad "this is really whacked!")

with
| (Bad s) -> s
| (Failure f) -> f
| _ -> "whatever" ;;

- : string = "this is really whacked!"

Next week

Imperative programming in ocaml!
The module system

	CS 11 Ocaml track: lecture 2
	Previously...
	Comments
	Algebraic data types
	Example 1
	Pattern matching
	Example 2
	Example 2 -- alternate
	Aside: the function keyword
	Example 2
	Example 3
	Example 3
	Defining your own operators
	Defining your own operators
	Defining your own operators
	Defining your own operators
	Records
	Creating records
	Using records
	The _ pattern
	Polymorphic types
	Polymorphic types
	Polymorphic types
	Polymorphic types
	Note on the libraries
	Note on the libraries
	Exception handling
	Example
	Example
	exception
	raise
	try/with (1)
	try/with (2)
	try/with (3)
	try/with (4)
	Next week

