i CS 11 Ocaml track: lecture 2

[Today:
= comments
= algebraic data types
= More pattern matching
= records
= polymorphic types
= ocaml libraries
= exception handling

i Previously...

= ocaml interactive interpreter

= compiling standalone programs
= pasic data types and operators
= et expressions, If expressions
= functions

= pattern matching

= higher-order functions

= tail recursion

i comments

= Comments start with (* and end with *)
= can be nested

= NoO single-line comments
(* This Is a comment. *)
(* This is

a (* nested comment *)

*)

i Algebraic data types

= AKA "union types"

= ldea: want a new data type that can be any
one of several different things

= Extremely useful!
= makes it easy to define complex data types

= Pattern matching automatically works with
the structure of these types

i Example 1

= Example:
type card = Spade | Heart | Diamond | Club

type Is a keyword
card Is the name of the type you're defining

Spade, Heart, Diamond, and Club are type
constructors
= also instances of type card

type names must start with lower-case letter
constructors must start with upper-case letter

i Pattern matching

let string_of card ¢ =

match ¢ with
| Spade -> "Spade"
| Heart -> "Heart"

| Diamond -> "Diamond"
| Club -> "Club"
= | means "or" (conceptually)
= N.B. first | is optional

i Example 2

type number = (* generic numbers *)
Zero
| Integer of int
| Real of float
let float_of number n =
match n with
Zero -> 0.0
| Integeri-> float of inti
| Real f->f

i Example 2 -- alternate

type number = (* generic numbers *)
| Zero (* note leading |)
| Integer of int
| Real of float
let float_of number n =
match n with
| Zero -> 0.0 (* note leading |)
| Integeri-> float of inti
| Real f->f

i Aside: the function keyword

let float_of number = function
Zero -> 0.0
| Integeri-> float of inti
| Real f->f

= Used for pattern matching with a one-argument
function

= Just a shortcut
= Contrast: fun keyword doesn't match patterns

i Example 2

let add n1 n2 = (* add generic numbers *)
match nl1, n2 with
Zero, n (* fall through to next case *)
| n, Zero ->n
| Integer i1, Integer i2 -> Integer (i1 + i2)
| Integer I, Real r (* fall through *)
| Real r, Integer i -> Real (r +. float_of IntI)
| Real r1, Real r2 -> Real (r1 +. r2)

i Example 3

= Abstract integer type:

type integer = (* recursive data type *)
| Zero
| Succ of integer

= NOTE: Can't re-use a constructor name (here,
Zero) in the same module

i Example 3

let rec add Xy =
match x with
| Zero ->y
| Succ x' -> Succ (add X' y)

= Recall: when defining a recursive function, need
to use let rec

i Defining your own operators

= In ocaml, can define your own operators

= Note that surrounding operator with () makes it
Into a function

(1) 5
-1 Int -> Int -> Int = <fun>
= Here, (+) Is the function version of the + operator

i Defining your own operators

= Want a +++ operator for our new integers:
let rec (+++) Xy =
match x with
| Zero ->y
| Succ x' -> Succ (X' +++y)

= Recall: when defining a recursive function, need
to use let rec

= New operators can only use non-alphanumeric
characters (except for some built-in ones)

i Defining your own operators

= Why is this broken?
let rec (***) xy =
match x with
| Zero -> Zero
| Succ Zero ->y
| Succ X' ->y +++ (X' *** y)

i Defining your own operators

= Correct version:
letrec (***) xy =
match x with
| Zero -> Zero
| Succ Zero ->y
| Succ X' ->y +++ (X' *** y)

i Records

= A record bundles together different pieces of data
= With possibly different types

= Like a tuple with a name for each position in the
tuple

type named_point = {
name : string ;
X : float;
y : float;

}

i Creating records

{ name="foo"; x=10.0; y=20.0 } ;;

- : named_point = {name = "foo"; x = 10.; y = 20.}

= NOTE: Type inference correctly determines that
the above expression is a named_point

= Can also write this as
{ x=10.0; name="foo"; y=20.0 }
(the fields don't have to be in any order)

= However, you can't leave out any of the field
names

i Using records

let add_points pl p2 =
match pl, p2 with
{name=nl; x=x1; y=yl},
{name=n2; x=x2; y=y2} ->
{name=nl1"™n2; x=x1 +. x2; y=yl +. y2}

i The pattern

let add_points pl p2 =
match pl, p2 with
{name=nl; x=x1; y=yl},
{name=_; x=x2; y=y2} ->
{name=nl; x=x1 +. x2; y=y1 +. y2}
= _ In patterns means "don't care"
= Ighores value In that position

i Polymorphic types

= Consider this function:
let rec list_length Ist =
match Ist with
| [1->0
| (h::t)-> 1+ list_length t
= What's the type of list_length?
val list_length : 'a list -> Int = <fun>

i Polymorphic types

= What's the type of list_length?

val list_length : 'a list -> int = <fun>

= This Is a polymorphic type

= Same type for lists of ints, lists of floats, etc.
list_length [1;2;3;4;5] 2 5

list_length ["foo"; "bar"; "baz"] = 3

= However, list elements must all be of same type
= How do we define a type like that?

i Polymorphic types

= Let's define our own list type:
type 'a our list =

| Nil

| Cons of 'a * 'a our_list
= 'a says that this is a polymorphic type
= Note: tuple types are printed with * e.g.
(10, "foo") ;;
- . Int * string = (10, "foo")

i Polymorphic types

= Let's use our new type:
let rec list_length our_Ist =
match our_Ist with
| Nil -> 0
| Cons (h, t) -> 1 + list_length t

i Note on the libraries

= There is a library function called List.length
= Lives in the List module
= Documented on www.ocaml.org web site

= You should browse through the standard libraries:
= Pervasives (built-in)
= List
= Array
= Hashtbl
= Printf

i Note on the libraries

= You don't have to have an "Import" statement to
use library functions

List.length [1;2;3;4;5]

-.int=5

= If you don't want to type List. all the time you can
do

open List

= but | recommend against it.

i Exception handling

= Ocaml includes a simple and effective exception
handling system

= ML language one of the first ones in which
exception handling was incorporated

= New keywords:
= raise
a try
= With
= exception

i Example

let rec find x Ist =
match Ist with
| []1 -> raise (Failure "not found")
| h::t->if x =hthen x else find x t

val find : 'a -> 'a list -> 'a = <fun>

i Example

find 1 [1;2;3;4;5];;
-rint=1

find 0 [1,;2;3;4,5];;
Exception: Failure "not found".
Failure ("not found");;

- . exn = Failure "not found"

i exception

= EXceptions have type exn
= Like an extensible union type

= Can add new constructors using the exception
keyword:

exception Bad of string ;;
exception Bad of string

s Recall: constructor must have first letter
capitalized

i raise

= Raise exceptions using the keyword raise:

raise (Bad "this is really whacked!");;
Exception: Bad "this is really whacked!".

i try/with (1)

= Catch exceptions in a try/with statement:

try
raise (Bad "this is really whacked!")
with (Bad s) -> s ;;
- . string = "this Is really whacked!"

i try/with (2)

= Catching multiple exceptions:

try
raise (Bad "this is really whacked!")
with e ->
match e with
(Bad s) -> s
| _-> "whatever" ;;
- . string = "this is really whacked!"

i try/with (3)

= Catching multiple exceptions, alternate way:

try
raise (Bad "this is really whacked!")
with (Bad s) -> s
| (Failure f) -> f
| _-> "whatever" ;;
- . string = "this is really whacked!"

i try/with (4)

= Slight variation:
try
raise (Bad "this is really whacked!")
with
| (Bad s) ->s
| (Failure f) -> f
| _-> "whatever" ;;
- . string = "this is really whacked!"

i Next week

= Imperative programming in ocaml!
= The module system

	CS 11 Ocaml track: lecture 2
	Previously...
	Comments
	Algebraic data types
	Example 1
	Pattern matching
	Example 2
	Example 2 -- alternate
	Aside: the function keyword
	Example 2
	Example 3
	Example 3
	Defining your own operators
	Defining your own operators
	Defining your own operators
	Defining your own operators
	Records
	Creating records
	Using records
	The _ pattern
	Polymorphic types
	Polymorphic types
	Polymorphic types
	Polymorphic types
	Note on the libraries
	Note on the libraries
	Exception handling
	Example
	Example
	exception
	raise
	try/with (1)
	try/with (2)
	try/with (3)
	try/with (4)
	Next week

