i CS 11 Ocaml track: lecture 1

s Preliminaries

= Need a CS cluster account
« http://www.cs.caltech.edu/
cgi-bin/sysadmin/account_request.cqgi

= Need to know UNIX
= ITS tutorial linked from track home page

= Track home page:
= WwWWw.cS.caltech.edu/courses/csl1l/material/ocaml

i Assignments

= 1st assignment is posted now
= Due one week after class, midnight
= Late penalty: 1 mark/day

s Redos

i Redos

s 1st redo = 1 mark off

s 2nd redo = 1 to 2 more marks off
s 3rd redo = 1 to 3 more marks off

= NO 4th redo! Grade - 6 mark penalty

i Passing

= Need average of 7/10 on labs

m 6 labs 2 42/60 marks

i Other administrative stuff

= See admin web page:

http://www.cs.caltech.edu/courses/csl11l/material/
ocaml/admin.html

s Covers how to submit labs, collaboration
policy, grading, etc.

i Textbook

= Introduction to Objective Caml

by Jason Hickey
= draft (don't redistribute)

i Ocaml: pros

= Ocaml Is a very nice language!

= Strong static type system
= catches lots of errors at compile time

= Very expressive type system
s first-class functions
= polymorphic types
= algebraic data types
= makes it easy to build complex data types
= references for mutable data

i Ocaml: pros

s Garbage collection
= Byte-code and native-code compilers

= Very fast!
= very competitive with C and C++
= especially If data structures are very complex

= Interactive interpreter for experimenting
= Clean design
= Can interface with C fairly easily

i Ocaml: pros

= Fully supports several different
programming paradigms:

» functional programming
= Imperative programming
= Object-oriented programming

= Most natural to use as a "mostly-
functional" language

= Safe language: no core dumps!

i But wait! There's more!

= Type inference to get benefits of static typing
without having to write out tons of declarations

= Very powerful module system
= Including separate compilation of modules

= Parameterizable modules (functors)
= Simple and powerful exception handling system
= Plus more experimental features

i Ocaml: cons

= Very few bad things about ocaml

= Native-code compiler doesn't support
shared libraries

= though 3rd-party tools can do this
= Type system sometimes too rigid

= Object system doesn't support
"downcasting"” /.e. "instanceof"

i Ocaml: cons

= Messy, ambiguous syntax

= "Operator underloading"
= + to add integers
= +. to add floats

= For purists: not as purely functional as
e.g. Haskell

= Some messy aspects of type system
= "'polymorphic references"

i Ocaml: uses

= Great language for writing compilers!
= Also great for writing theorem provers

= Recently, Ocaml used for tasks in many
other areas:

= Simulations

= finance

= Operating systems
= etc.

i Ocaml: uses

= Can compete successfully with C/C++

= Especially when
= safety Is important
= data structures are very complex

= In these cases, can often outperform
C/C++

= Example: Ensemble system re-written
from C - Ocaml; new version faster

i Ocaml: uses

= Why should Ocaml give faster code In
those cases?

s After all, C/C++ "closer to the machine"

s Answer:

= easler to tweak very complex algorithms in
ways that would overwhelm C/C++
programmers

= and still have correct, working code

i Ocaml: history

= Ocaml is a dialect of the "ML" language

= ML originally the "meta-language" for a
theorem-proving program called "LCF"

= "Logic for Computable Functions"

i Ocaml: history

= Adapted into a language called CAML by
researchers in INRIA (France)

» "Categorical Abstract Machine Language"

= Newer versions have a very different internal
structure, but kept name

= "Ocaml" Is "Objective Caml"
= CAML with object-oriented extensions

= Prime candidate for worst computer
language name of all time

i Our emphasis

= In this track, we will focus on Ocaml's use
as a functional programming language

= We will also cover imperative aspects
= but not OO features

= Good preparation for e.g. CS 134b
(compiler course)

i Functional programming

= What is a functional programming language?

= It's a language that
= treats functions as "first-class" data
= Meaning?

= Functions can be
= passed as arguments
= created on-the-fly
= returned as a result from other functions

i Functional programming

= Other aspects of FP:

= Data should be persistent
= hames, once bound, do not get rebound
= (unless they are function arguments)
= mutable data structures like arrays avoided

= In favor of non-mutable data structures like singly-
linked lists

= Assignment statements rarely used
= EXxplicit loops rarely used; use recursion instead
= Higher-order functions used a lot

i Functional programming

= Learning the syntax of Ocaml is relatively easy

= Learning to program in a "functional style" Is
much harder

= Main goal of track is to force you to learn to
think this way

= (If you've taken CS 1, you already know how to
think this way)

i Getting started

= The interactive interpreter Is just called
ocaml

= Get out of it by typing control-D (D AKA
end-of-file)

= When inside, can do essentially anything
that could be done in a file
= define functions

= define types
= r'un code

i Getting started

= The "hello, world!" program (sort of):
% ocaml

Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!

- 2unit = O

D

%

i Getting started

= The "hello, world!" program (sort of):
% ocaml

Objective Caml version 3.08.3

prompt

‘L Getting started

= The "hello, world!" program (sort of):
% ocaml

Objective Caml version 3.08.3

#\Efintf-printf "hello, World!\n";;‘
hello, world!

- 2 unit = O \

D statement

%

i Getting started

= The "hello, world!" program (sort of):
% ocaml

Objective Caml version 3.08.3

Printf._printf "hello, world!\n";;
| hello, world! |

- 2 unit = O

"D side effect

%

i Getting started

= The "hello, world!" program (sort of):
% ocaml

Objective Caml version 3.08.3

Printf._printf "hello, world!\n";;
hello, world!

|- - unit = Q|
D

0 result name, type
and value

i Getting started

= In Iinteractive interpreter, signal that you

want interpreter to process your code by
typing two semicolons (; ;)

= This Is not necessary for source code In
files

= SO don't put it in! It's annoying to read.

i Stand-alone executables (1)

s Consider this file called hello.ml:

let = Printf.printf "hello, world!\n"

= Complile to executable thusly:

% ocamlc hello.ml -0 hello

% hello
hello, world!

i Stand-alone executables (2)

s Can also do this:

% ocamlopt.opt hello.ml -0 hello
% hello
hello, world!

= Generates native code; previous version
generated byte code

i All right, then...

= Now we'll start talking about the language
itself

= Very sketchy; see textbook for more details

s Also see ocaml manual on website
= http://www.ocaml.org

i Basic data types (1)

= unit
= pbool
= Int
= float
= char
= String

O

false true

1 2 3 4 -1 0 42

1.0 3.14 2.71828

"c* "h"™ "\n" "\\" “"\"°
"this 1s a string”

i Basic data types (2)

= lists [""this"; "i1s"; "a"; "list"}
= all elements of a list must be the same type!

= arrays [] 1.0; 2.0; 3.0; 4.0]]

= references ref O

= tuples (1, "two", 3.0)

= elements of tuple don't have to be of same type

= but each particular tuple has the type which is the
product of its constituent types!

= here,typeis Int * string * float

s float

= String

m liSts

m liSts

= reference
= reference

(string concatenation)
("cons")

(list concatenation)
(dereference)
(assignment to)

i let expressions

let x = 10 In X + X;;
- - 1nt = 20
let x = 10 1In
let y = 20 In
X T VY;,
- - 1nt 30
= Scope of name extends to end of let
expression

i Defining functions (1)

let F x =2 * x - 3;;
val £ - 1nt -> 1Int = <fun>
T 4;;

- - 5 = Int

i Defining functions (2)

let rec sum to X =
IT X =0 then O
else X + sum to (X - 1);;
val sum to : Int -> Int = <fun>
T 10;;
- - 55 = Int
= Need let rec to define recursive functions, not
just let

i Pattern matching (1)

let rec sum to X =
match x with
O >0
| X" -> x* + sum to (X" - 1)

= Note: can use single quote (") as a character Iin
identifiers

i Pattern matching (2)

let rec list length Ist =
match Ist with

[1 ->0
| h - t -=>1 + list length t

= Pattern matching usually simpler than explicit if
statement

= Also can match deeply nested patterns
= can make code much more readable

i Higher-order functions (1)

let rec fTilter T Ist =
match Ist with
[1 > [
| h - t ->
it (fF h) then (h -: (filter T 1))
else (filter T t)

= Create new list from old list (all elements where ¥ X
IS true)

i Higher-order functions (2)

Ffilter (fun x -=> x mod 2 = 0)
[1;2:3;4:;5] ;;
- 2 1nt list = [2; 4]

= Tun is ocaml's equivalent of a lambda
expression (anonymous function)

i Pattern guards

let rec fTilter T Ist =
match Ist with
[1 > [
| h :: €t when (f h) ->
(h -: (filter T t))
|l h :: t > (Ffilter T t)

= Same meaning as previous filter function

‘L Tall recursion (1)

let sum Ist =
let rec sum 1ter rest sum =
match rest with
[] —> sum
| h -2 € -> sum _1ter t (sum + h)
in
sum_1ter Ist O

i Tall recursion (2)

= Two Interesting things in sum code:
= helper function sum _1ter in the body of sum
= Sum_1ter is tall recursive

= Meaning: recursive call has no pending
operations to complete once it returns

= Significance?
= executes in a constant amount of space
= highly desirable!

i That's all for now

= Lablisup
s Several small functions to write

= Get practice In all these aspects of
language
= Have fun!

	CS 11 Ocaml track: lecture 1
	Assignments
	Redos
	Passing
	Other administrative stuff
	Textbook
	Ocaml: pros
	Ocaml: pros
	Ocaml: pros
	But wait! There's more!
	Ocaml: cons
	Ocaml: cons
	Ocaml: uses
	Ocaml: uses
	Ocaml: uses
	Ocaml: history
	Ocaml: history
	Our emphasis
	Functional programming
	Functional programming
	Functional programming
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Stand-alone executables (1)
	Stand-alone executables (2)
	All right, then...
	Basic data types (1)
	Basic data types (2)
	Operators
	let expressions
	Defining functions (1)
	Defining functions (2)
	Pattern matching (1)
	Pattern matching (2)
	Higher-order functions (1)
	Higher-order functions (2)
	Pattern guards
	Tail recursion (1)
	Tail recursion (2)
	That's all for now

