
CS 11 Ocaml track: lecture 1

Preliminaries
Need a CS cluster account

http://www.cs.caltech.edu/
cgi-bin/sysadmin/account_request.cgi

Need to know UNIX
ITS tutorial linked from track home page

Track home page:
www.cs.caltech.edu/courses/cs11/material/ocaml

Assignments

1st assignment is posted now

Due one week after class, midnight

Late penalty: 1 mark/day

Redos

Redos

1st redo = 1 mark off

2nd redo = 1 to 2 more marks off

3rd redo = 1 to 3 more marks off

No 4th redo! Grade - 6 mark penalty

Passing

Need average of 7/10 on labs

6 labs 42/60 marks

Other administrative stuff

See admin web page:
http://www.cs.caltech.edu/courses/cs11/material/

ocaml/admin.html

Covers how to submit labs, collaboration
policy, grading, etc.

Textbook

Introduction to Objective Caml

by Jason Hickey

draft (don't redistribute)

Ocaml: pros
Ocaml is a very nice language!
Strong static type system

catches lots of errors at compile time

Very expressive type system
first-class functions
polymorphic types
algebraic data types

makes it easy to build complex data types

references for mutable data

Ocaml: pros

Garbage collection
Byte-code and native-code compilers
Very fast!

very competitive with C and C++
especially if data structures are very complex

Interactive interpreter for experimenting
Clean design
Can interface with C fairly easily

Ocaml: pros

Fully supports several different
programming paradigms:

functional programming
imperative programming
object-oriented programming

Most natural to use as a "mostly-
functional" language
Safe language: no core dumps!

But wait! There's more!
Type inference to get benefits of static typing
without having to write out tons of declarations
Very powerful module system

including separate compilation of modules

Parameterizable modules (functors)
Simple and powerful exception handling system
Plus more experimental features

Ocaml: cons

Very few bad things about ocaml
Native-code compiler doesn't support
shared libraries

though 3rd-party tools can do this

Type system sometimes too rigid
Object system doesn't support
"downcasting" i.e. "instanceof"

Ocaml: cons

Messy, ambiguous syntax
"Operator underloading"

+ to add integers
+. to add floats

For purists: not as purely functional as
e.g. Haskell
Some messy aspects of type system

"polymorphic references"

Ocaml: uses

Great language for writing compilers!
Also great for writing theorem provers
Recently, Ocaml used for tasks in many
other areas:

simulations
finance
operating systems
etc.

Ocaml: uses

Can compete successfully with C/C++
Especially when

safety is important
data structures are very complex

In these cases, can often outperform
C/C++
Example: Ensemble system re-written
from C Ocaml; new version faster

Ocaml: uses

Why should Ocaml give faster code in
those cases?
After all, C/C++ "closer to the machine"
Answer:

easier to tweak very complex algorithms in
ways that would overwhelm C/C++
programmers
and still have correct, working code

Ocaml: history

Ocaml is a dialect of the "ML" language
ML originally the "meta-language" for a
theorem-proving program called "LCF"

"Logic for Computable Functions"

Ocaml: history

Adapted into a language called CAML by
researchers in INRIA (France)

"Categorical Abstract Machine Language"
Newer versions have a very different internal
structure, but kept name

"Ocaml" is "Objective Caml"
CAML with object-oriented extensions
Prime candidate for worst computer
language name of all time

Our emphasis

In this track, we will focus on Ocaml's use
as a functional programming language
We will also cover imperative aspects

but not OO features

Good preparation for e.g. CS 134b
(compiler course)

Functional programming
What is a functional programming language?
It's a language that

treats functions as "first-class" data

Meaning?
Functions can be

passed as arguments
created on-the-fly
returned as a result from other functions

Functional programming
Other aspects of FP:
Data should be persistent

names, once bound, do not get rebound
(unless they are function arguments)
mutable data structures like arrays avoided
in favor of non-mutable data structures like singly-
linked lists

Assignment statements rarely used
Explicit loops rarely used; use recursion instead
Higher-order functions used a lot

Functional programming
Learning the syntax of Ocaml is relatively easy
Learning to program in a "functional style" is
much harder
Main goal of track is to force you to learn to
think this way
(If you've taken CS 1, you already know how to
think this way)

Getting started

The interactive interpreter is just called
ocaml
Get out of it by typing control-D (^D AKA
end-of-file)
When inside, can do essentially anything
that could be done in a file

define functions
define types
run code

Getting started
The "hello, world!" program (sort of):

% ocaml
Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!
- : unit = ()
^D
%

Getting started
The "hello, world!" program (sort of):

% ocaml
Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!
- : unit = ()
^D
%

prompt

Getting started
The "hello, world!" program (sort of):

% ocaml
Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!
- : unit = ()
^D
%

statement

Getting started
The "hello, world!" program (sort of):

% ocaml
Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!
- : unit = ()
^D
%

side effect

Getting started
The "hello, world!" program (sort of):

% ocaml
Objective Caml version 3.08.3

Printf.printf "hello, world!\n";;
hello, world!
- : unit = ()
^D
% result name, type

and value

Getting started
In interactive interpreter, signal that you
want interpreter to process your code by
typing two semicolons (;;)
This is not necessary for source code in
files

So don't put it in! It's annoying to read.

Stand-alone executables (1)
Consider this file called hello.ml:

let _ = Printf.printf "hello, world!\n"

Compile to executable thusly:

% ocamlc hello.ml -o hello
% hello
hello, world!

Stand-alone executables (2)
Can also do this:

% ocamlopt.opt hello.ml -o hello
% hello
hello, world!

Generates native code; previous version
generated byte code

All right, then...
Now we'll start talking about the language
itself
Very sketchy; see textbook for more details
Also see ocaml manual on website

http://www.ocaml.org

Basic data types (1)
unit ()
bool false true
int 1 2 3 4 -1 0 42
float 1.0 3.14 2.71828
char 'c' 'h' '\n' '\\' '\''
string "this is a string"

Basic data types (2)
lists ["this"; "is"; "a"; "list"]

all elements of a list must be the same type!
arrays [| 1.0; 2.0; 3.0; 4.0 |]
references ref 0
tuples (1, "two", 3.0)

elements of tuple don't have to be of same type
but each particular tuple has the type which is the
product of its constituent types!
here, type is int * string * float

Operators
int + - * /
float +. -. *. /.
string ^ (string concatenation)
lists :: ("cons")
lists @ (list concatenation)
reference ! (dereference)
reference := (assignment to)

let expressions
let x = 10 in x + x;;
- : int = 20
let x = 10 in

let y = 20 in
x + y;;

- : int = 30
Scope of name extends to end of let
expression

Defining functions (1)
let f x = 2 * x - 3;;
val f : int -> int = <fun>
f 4;;
- : 5 = int

Defining functions (2)
let rec sum_to x =

if x = 0 then 0
else x + sum_to (x - 1);;

val sum_to : int -> int = <fun>
f 10;;
- : 55 = int

Need let rec to define recursive functions, not
just let

Pattern matching (1)
let rec sum_to x =

match x with
0 -> 0

| x' -> x' + sum_to (x' - 1)
;;

Note: can use single quote (') as a character in
identifiers

Pattern matching (2)
let rec list_length lst =

match lst with
[] -> 0

| h :: t -> 1 + list_length t
;;

Pattern matching usually simpler than explicit if
statement
Also can match deeply nested patterns

can make code much more readable

Higher-order functions (1)
let rec filter f lst =

match lst with
[] -> []

| h :: t ->
if (f h) then (h :: (filter f t))
else (filter f t)

;;
Create new list from old list (all elements where f x
is true)

Higher-order functions (2)
filter (fun x -> x mod 2 = 0)
[1;2;3;4;5] ;;

- : int list = [2; 4]

fun is ocaml's equivalent of a lambda
expression (anonymous function)

Pattern guards
let rec filter f lst =

match lst with
[] -> []

| h :: t when (f h) ->
(h :: (filter f t))

| h :: t -> (filter f t)
;;

Same meaning as previous filter function

Tail recursion (1)
let sum lst =

let rec sum_iter rest sum =
match rest with
[] -> sum

| h :: t -> sum_iter t (sum + h)
in
sum_iter lst 0

;;

Tail recursion (2)
Two interesting things in sum code:

helper function sum_iter in the body of sum
sum_iter is tail recursive
meaning: recursive call has no pending
operations to complete once it returns
significance?
executes in a constant amount of space

highly desirable!

That's all for now
Lab 1 is up
Several small functions to write
Get practice in all these aspects of
language
Have fun!

	CS 11 Ocaml track: lecture 1
	Assignments
	Redos
	Passing
	Other administrative stuff
	Textbook
	Ocaml: pros
	Ocaml: pros
	Ocaml: pros
	But wait! There's more!
	Ocaml: cons
	Ocaml: cons
	Ocaml: uses
	Ocaml: uses
	Ocaml: uses
	Ocaml: history
	Ocaml: history
	Our emphasis
	Functional programming
	Functional programming
	Functional programming
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Getting started
	Stand-alone executables (1)
	Stand-alone executables (2)
	All right, then...
	Basic data types (1)
	Basic data types (2)
	Operators
	let expressions
	Defining functions (1)
	Defining functions (2)
	Pattern matching (1)
	Pattern matching (2)
	Higher-order functions (1)
	Higher-order functions (2)
	Pattern guards
	Tail recursion (1)
	Tail recursion (2)
	That's all for now

