
CS 11 Haskell track: lecture 6

 This week:
 Modules
 Arrays
 More Monads

 MonadPlus
 Wrapping up

Modules

 Haskell modules much more conservative
than ocaml's module system

 Much of the work of e.g. functors done by
type classes

 Consequently, modules are rather simple

Module example

module Tree (Tree (Leaf, Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

Module example

module Tree (Tree(Leaf, Branch), fringe) where
...
 This means that this module explicitly exports

 the Tree datatype
 the fringe function
 nothing else

 If written as:
module Tree where ...
 then everything in module is exported

Importing into modules

module Main where
import Tree (Tree(Leaf, Branch), fringe)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

 If the second line was just
import Tree
 then everything exported from Tree module

would be imported

Avoiding name clashes (1)

 By default, imported names dumped into local
namespace

 What if two modules are used which share
names?

 Can explicitly qualify names during import

Avoiding name clashes (2)

module Main where
import Tree (Tree(Leaf, Branch), fringe)
import qualified Fringe (fringe)

 Module Fringe contains a function fringe
which has same name as Tree module's
fringe function

 Qualifying means refer to second fringe
as Fringe.fringe

import qualified ... as ...

 Can rename the qualifier of a module by using
the as syntax

import qualified VeryLongModuleName as V

 Watch out for this:
import Foobar as F

 Brings in all names from Foobar with and
without qualification (why would you want
this?)

hiding declarations

 Can selectively hide some names upon
import with a hiding declaration:

 Assume module A exports x and y
import A -- x and y imported
import A hiding y -- x only
import qualified A hiding y -- A.x only

Modules and instances

 Instance declarations not explicitly
imported/exported
 modules export all instance declarations

Arrays

 Haskell arrays are functional
 no in-place update in standard Arrays
 though some mutable array types in ghc

libraries (not covered here)
 Arrays require an Ix (indexing) type to

represent indices (usually just Int)

Array indices

class (Ord a) => Ix a where
 range :: (a, a) -> [a]
 index :: (a, a) -> a -> Int
 inRange :: (a, a) -> a -> Bool

range (0,4) => [0,1,2,3,4]
range ((0,0), (1,2)) =>

[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)]

Array indices

class (Ord a) => Ix a where
 range :: (a, a) -> [a]
 index :: (a, a) -> a -> Int
 inRange :: (a, a) -> a -> Bool

index (1,9) 2 => 1
index ((0,0), (1,2)) (1,1) => 4

Creating arrays

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

squares = array (1,100) [(i, i*i) | i <- [1..100]]

Accessing array elements

squares ! 8 => 64

bounds squares => (1,100)

Example

fibs :: Int -> Array Int Int
fibs n = a
 where a =
 array (0, n)
 ([(0, 1), (1, 1)] ++

 [(i, a!(i-2) + a!(i-1)) | i <- [2..n]])
 Q: why do we need the where clause?

"Modifying" array elements

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b

squares_bad = squares // [(8, 63)]
squares_bad ! 8 => 63

 Creates a new array, not modifying in place
 Other ways to actually modify in place

 but need to be in e.g. IO monad

MonadPlus

 Many Monads have a notion of
 a "zero" element
 some kind of "addition" of monadic objects

 This is captured in the MonadPlus class

class Monad m => MonadPlus m where
 mzero :: m a
 mplus :: m a -> m a -> m a

MonadPlus instances

instance MonadPlus Maybe where
mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` ys = xs

instance MonadPlus [] where
mzero = []
mplus = (++)

Where to now? (1)

 Lots of information on the web
 www.haskell.org
 www.haskell.org/ghc

 Haskell mailing lists:
 www.haskell.org/haskellwiki/Mailing_Lists
 haskell mailing list
 haskell-cafe mailing list

Where to now? (2)

 Lots of interesting paper collections
 I particularly recommend Phil Wadler's

papers:
 http://homepages.inf.ed.ac.uk/wadler/
 Good examples:

 "Imperative Functional Programming"
 "Monads for Functional Programming"
 "Comprehending monads"

