
CS 11 Haskell track: lecture 6

 This week:
 Modules
 Arrays
 More Monads

 MonadPlus
 Wrapping up

Modules

 Haskell modules much more conservative
than ocaml's module system

 Much of the work of e.g. functors done by
type classes

 Consequently, modules are rather simple

Module example

module Tree (Tree (Leaf, Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

Module example

module Tree (Tree(Leaf, Branch), fringe) where
...
 This means that this module explicitly exports

 the Tree datatype
 the fringe function
 nothing else

 If written as:
module Tree where ...
 then everything in module is exported

Importing into modules

module Main where
import Tree (Tree(Leaf, Branch), fringe)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

 If the second line was just
import Tree
 then everything exported from Tree module

would be imported

Avoiding name clashes (1)

 By default, imported names dumped into local
namespace

 What if two modules are used which share
names?

 Can explicitly qualify names during import

Avoiding name clashes (2)

module Main where
import Tree (Tree(Leaf, Branch), fringe)
import qualified Fringe (fringe)

 Module Fringe contains a function fringe
which has same name as Tree module's
fringe function

 Qualifying means refer to second fringe
as Fringe.fringe

import qualified ... as ...

 Can rename the qualifier of a module by using
the as syntax

import qualified VeryLongModuleName as V

 Watch out for this:
import Foobar as F

 Brings in all names from Foobar with and
without qualification (why would you want
this?)

hiding declarations

 Can selectively hide some names upon
import with a hiding declaration:

 Assume module A exports x and y
import A -- x and y imported
import A hiding y -- x only
import qualified A hiding y -- A.x only

Modules and instances

 Instance declarations not explicitly
imported/exported
 modules export all instance declarations

Arrays

 Haskell arrays are functional
 no in-place update in standard Arrays
 though some mutable array types in ghc

libraries (not covered here)
 Arrays require an Ix (indexing) type to

represent indices (usually just Int)

Array indices

class (Ord a) => Ix a where
 range :: (a, a) -> [a]
 index :: (a, a) -> a -> Int
 inRange :: (a, a) -> a -> Bool

range (0,4) => [0,1,2,3,4]
range ((0,0), (1,2)) =>

[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)]

Array indices

class (Ord a) => Ix a where
 range :: (a, a) -> [a]
 index :: (a, a) -> a -> Int
 inRange :: (a, a) -> a -> Bool

index (1,9) 2 => 1
index ((0,0), (1,2)) (1,1) => 4

Creating arrays

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

squares = array (1,100) [(i, i*i) | i <- [1..100]]

Accessing array elements

squares ! 8 => 64

bounds squares => (1,100)

Example

fibs :: Int -> Array Int Int
fibs n = a
 where a =
 array (0, n)
 ([(0, 1), (1, 1)] ++

 [(i, a!(i-2) + a!(i-1)) | i <- [2..n]])
 Q: why do we need the where clause?

"Modifying" array elements

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b

squares_bad = squares // [(8, 63)]
squares_bad ! 8 => 63

 Creates a new array, not modifying in place
 Other ways to actually modify in place

 but need to be in e.g. IO monad

MonadPlus

 Many Monads have a notion of
 a "zero" element
 some kind of "addition" of monadic objects

 This is captured in the MonadPlus class

class Monad m => MonadPlus m where
 mzero :: m a
 mplus :: m a -> m a -> m a

MonadPlus instances

instance MonadPlus Maybe where
mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` ys = xs

instance MonadPlus [] where
mzero = []
mplus = (++)

Where to now? (1)

 Lots of information on the web
 www.haskell.org
 www.haskell.org/ghc

 Haskell mailing lists:
 www.haskell.org/haskellwiki/Mailing_Lists
 haskell mailing list
 haskell-cafe mailing list

Where to now? (2)

 Lots of interesting paper collections
 I particularly recommend Phil Wadler's

papers:
 http://homepages.inf.ed.ac.uk/wadler/
 Good examples:

 "Imperative Functional Programming"
 "Monads for Functional Programming"
 "Comprehending monads"

