
CS 11 Haskell track: lecture 3

 This week:
 Defining infix operators

 Fixity declarations and precedence
 Field labels
 Type classes!
 More on I/O

Defining infix operators
 Infix operators are really just functions

 Can be defined like other functions e.g.
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

(.) :: (b->c) -> (a->b) -> (a->c)
f . g = \x -> f (g x)
 (These are both in the Prelude)

Fixity (precedence) declarations

 Ten operator precedence levels exist in Haskell
 can't add any more
 can assign new operators to any precedence

infixr 5 ++

infixr 9 .
 infixr: right-associative
 infixl: left-associative
 infix: non-associative

Field labels (1)
 Might want to define a record-like data

structures
data Point = Pt Float Float
pointx :: Point -> Float
pointx (Pt x _) = x
pointy :: Point -> Float
pointy (Pt _ y) = y

Field labels (2)
 Short form:
data Point = Pt { pointx :: Float,

 pointy :: Float }

 or:
data Point = Pt { pointx, pointy :: Float }
:t pointx
pointx :: Point -> Float
:t pointy
pointy :: Point -> Float

Field labels (3)

 Can use field labels to construct new values:
Pt {pointx = 1, pointy = 2}
 Equivalent to:
Pt 1 2
 Can pattern match on labels:
absPoint :: Point -> Float
absPoint (Pt {pointx = x, pointy = y})
= sqrt (x*x + y*y)

Type classes (1)

 Some operations can be defined for many
different data types
 == /= defined for many types
 < <= > >= defined for many types
 + - * defined for numeric types

 Causes problems for most languages
 does + mean "add integers" or "add floats"?

 Most languages resolve using variable type decls
 Some define separate operators (+ vs +.)

Type classes (2)

 Problems:
 May want to overload operators for new data

types
 Want to resolve all types at compile time
 Don't want to break type inference

 Solution:
 Declare certain groups of operations as a

"type class"

Type classes (3)

class Eq a where

 (==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

 This declares Eq as a type class with two
operations == and /= of type a -> a -> Bool

 Provides default definition for /= in terms of ==
 Defined in Prelude

Defining class instances (1)

 Make pre-existing classes instances of type
class:

instance Eq Integer where
 x == y = x `integerEq` y
instance Eq Float where
 x == y = x `floatEq` y

 (assumes integerEq and floatEq
functions exist)

Defining class instances (2)

 Do same for user-defined classes:
data Tree a = Leaf a
 | Branch (Tree a) (Tree a)
instance (Eq a) => Eq (Tree a) where
 Leaf x == Leaf y = x == y
 (Branch l1 r1) == (Branch l2 r2) =
 (l1==l2) && (r1==r2)
 _ == _ = False

 Note context: (Eq a) => ...

Other useful classes

 Comparable types:
Ord  < <= > >=
 Printable types:
Show  show where
 show :: a -> String
 Numeric types:
Num  + - * negate abs etc.

Using type classes

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
 quicksort lt ++ [x] ++ quicksort ge
 where
 lt = [y | y <- xs, y < x]
 ge = [y | y <- xs, y >= x]
 Any type not defining < or >= can't be
quicksorted using this definition

Deriving type classes (1)

 Sometimes instance definition is obvious:

data Color = Red | Green | Blue
instance Show (Color) where
 show Red = "Red"
 show Green = "Green"
 show Blue = "Blue"

Deriving type classes (2)

 Shorter:
data Color = Red | Green | Blue
 deriving Show
 Now instance definition not needed
 Often used for classes whose definition is trivial
 e.g. Eq, Show
data Color = Red | Green | Blue
 deriving (Eq, Show)
 Only a few classes can be derived

Input / Output (I/O)

 Input/output is modeled in Haskell as "actions" or
"computations"

 Represented by types of form: IO a
 A type IO a is a type which does some input

and/or output and "returns" a value of type a
 Entire program is a value of type IO ()

 where () is the unit (no value) type
 This is the type of the main function

Simple I/O actions

 Take a string, print it, return nothing:
putStr :: String -> IO ()

 Take a string, print it + newline, return
nothing:
putStrLn :: String -> IO ()

 Get a string ending in a newline and return it
getLine :: IO String

Combining I/O actions (1)

 I/O would be unusable if couldn't combine
I/O actions to make more complex actions

 Two basic functions:
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

 (>>=) is called "bind"
 (real types are more general than this)

 These are also the characteristic functions
of the Monad type class

Combining I/O actions (2)

 return x converts a value into an action
that returns that value

 (>>=) combines
 an action returning type a
 a function that takes a value of type a and

returns an action returning type b
 ... to get an action returning type b

Combining I/O actions (3)

(>>=):: IO a -> (a -> IO b) -> IO b
 Consider:
 f1 >>= \x -> f2 x -- or: f1 >>= f2
 f1 has type IO a
 a value from IO a is "unpacked" into x
 x is passed to function of type (a -> IO b)
 result: value of type IO b
 This is the only way to use the IO value!

Example (in ghci)

Prelude> return "hello!"

[nothing happens]
Prelude> return "hello!" >>= putStrLn
hello!
 Alternate notation:
Prelude> do s <- return "hello!";
 putStrLn s
 Called "do notation"

do notation (1)

 May want to use several I/O actions in a function
getTwoLines :: IO String
getTwoLines = getLine >>= \a ->
 getLine >>= \b ->
 return (a ++ b)
 Yuck!
 So common that special syntactic sugar exists to

make it easier to use
 Works for any monad (including IO monad)

do notation (2)

 Short form:
getTwoLines :: IO String
getTwoLines = do a <- getLine
 b <- getLine
 return (a ++ b)
 Looks like imperative code
 Acts like imperative code
 but is purely functional!

Other IO operators (1)

 (>>=) operator sequences actions, passing result
of one action to another action

 Sometimes need to sequence actions but don't care
about the result

 (>>) operator used in that case
 Definition:
(>>) :: IO a -> IO b -> IO b
a >> b = a >>= _ -> b

 (type is actually more general than this)

Other IO operators (2)

 fail function used when something goes wrong
fail :: String -> IO a
 fail can produce a result of any IO type
 Weak form of error handling
 Allows you to break out of a computation that

cannot succeed
 String is the error message you give

More functions (1)

 Take a sequence of IO actions, do them one after
the other, return list of all results

sequence :: [IO a] -> IO [a]
 Take a sequence of IO actions, do them one after

the other, return nothing
sequence_ :: [IO a] -> IO ()
 Map a function generating IO actions over a list
mapM :: (a -> IO b) -> [a] -> IO [b]
mapM_ :: (a -> IO b) -> [a] -> IO ()

More functions (2)
Prelude> mapM return [1, 2, 3]
Prelude> mapM return [1, 2, 3] >>= print
[1,2,3]
Prelude> mapM_ return [1, 2, 3] >>= print
()
Prelude> mapM_ putStrLn ["foo", "bar", "baz"]
foo
bar
baz

Reference

 A good (more advanced) tutorial on Haskell
I/O:

http://haskell.org/haskellwiki/IO_inside
 Explains in more detail how I/O actually is

implemented and how it works

Next week

 Monads
 see how this stuff really works
 generalize to many other situations

