
CS11 Advanced Java

Winter 2011-2012
Lecture 7

Today’s Topics

n  Long-running tasks in Swing apps
n  A brief overview of Swing dialog windows
n  Logging
n  Conditional compilation

Boggle Server

n  Last week: add the Boggle server!
q  RMI calls from clients to server to start/end games

n  Click the “Start Game” button:
q  Client calls the server’s startGame() method…
q  Client freezes for at least 15 seconds!
q  No UI updates at all!

n  Problem:
q  RMI call happens on Swing event-dispatch thread!
q  No Swing events can be processed while RMI call

is waiting to return

Swing and Long-Running Tasks

n  Important rule for Swing UI programming:
q  Don’t perform long-running tasks using the Swing

event-dispatcher thread!
q  Blocks the processing of other Swing events, and

all UI updates, etc.
n  If a Swing app must do long-running tasks:

q  Run the task on a separate worker thread
q  Swing UI code hands the task to the worker

thread, then monitors the worker’s progress

SwingWorker

n  Swing includes a class to handle long-running tasks
q  javax.swing.SwingWorker
q  Creates and manages a worker thread to execute

long-running tasks in a Swing-friendly way
n  How to use:

q  Create a subclass of SwingWorker for your task
q  Implement doInBackground() method to perform task

n  This method is called from the worker thread automatically
q  Override done() method to be notified when task is done

n  This method is called on the event-dispatcher thread
n  Can update user-interface from within this method!

Subclassing SwingWorker

n  SwingWorker uses Java generics
q  SwingWorker<T, V>
q  T is the type of the final result produced by task

n  e.g. for call to Boggle server, T = BoggleBoard
q  V is the type of any intermediate results produced

n  Used for tasks that can produce intermediate results
n  If you don’t need it, just specify Object

n  Boggle client example:
class StartGameWorker
 extends SwingWorker<BoggleBoard, Object>

n  Task returns a Boggle board
n  We don’t care about intermediate results, so specify Object

Implementing doInBackground()

n  Signature of doInBackground():
q  protected T doInBackground()

n  In your implementation:
q  Specify value of T
q  Can make the method public as well, but not critical
q  If implementation can throw, let the exceptions propagate!

n  Example:
@Override
public BoggleBoard doInBackground()
 throws PlayerException, RemoteException {
 return server.startGame(playerName);
}

Task Completion

n  The done() method is executed on Swing event-
dispatch thread when task is finished
q  protected void done()
q  Default implementation does nothing
q  Override done() to perform your own tasks, e.g. updating

your Swing UI
q  For Boggle client:

n  Display Boggle board returned from server, start timer, etc.
n  Get worker’s results by calling get() method

q  Returns same type as doInBackground()
q  If doInBackground() threw, calling get() will cause an
ExecutionException to be thrown

Using the SwingWorker Class

n  Simple procedure to use Swing workers:
q  Create an instance of the SwingWorker subclass
q  Call the execute() method on it

n  Method starts worker thread, then returns immediately
n  Your code can call execute() from any thread,

including event-dispatch thread

n  SwingWorker object can only be used once
q  Cannot reuse a SwingWorker object!
q  Just create a new one, then call execute() on it

SwingWorker Notes

n  Good idea to implement SwingWorker as a private
inner class
q  Can access application’s state directly
q  Can manipulate UI objects directly

n  The get() method blocks if the task isn’t finished!
q  A good reason to call get() from inside done()
q  Can use isDone() method to check if task is finished

n  SwingWorker has other features too
q  Can cancel in-progress tasks
q  Can produce intermediate results and monitor progress

Dialog Boxes

n  Dialog boxes (aka “dialogs”) are pop-up windows
q  Report errors or other important messages to the user
q  Request specific input values from the user
q  Display final results or details of some task to the user

n  Two kinds of dialogs:
q  Modal:

n  No other window in the application can receive user
input until the dialog window is closed

n  System-modal dialogs block all applications until closed
q  Modeless:

n  Other windows in the application can still receive user
input while dialog window is visible

n  In Swing, dialog classes derive from JDialog

JOptionPane Dialogs

n  Swing provides JOptionPane for most
common dialog needs
q  Simple informational or error dialogs
q  Getting a single field of input from user
q  Requesting yes/no-type confirmation from user

n  JOptionPane doesn’t derive from JDialog!
q  Can’t create a JOptionPane and show it directly
q  Have to embed a JOptionPane in a dialog object

n  JOptionPane creates modal dialogs

JOptionPane Dialogs (2)

n  JOptionPane provides static methods to
handle most common dialog tasks

n  Example:
JOptionPane.showMessageDialog(frame,
 "Error while contacting server:\n" + e.getCause(),
 "Server Error", JOptionPane.ERROR_MESSAGE);

q  Shows an error message to the user
q  Specify parent frame so that dialog is centered in

the frame
q  Result:

JOptionPane Dialogs (3)

n  Static methods:
q  showMessageDialog(...)

n  Tell the user about something that has happened
q  showConfirmDialog(...)

n  Asks a question requiring confirmation, e.g. yes/no, ok/
cancel, etc.

q  showInputDialog(...)
n  Prompt the user for a single field of input

q  showOptionDialog(...)
n  The general-purpose version that exposes all of the

above capabilities

Hiding and Disposing Dialogs

n  Dialogs are shown by calling:
dialog.setVisible(true);

q  If dialog is modal, this call doesn’t return until
dialog is closed

n  Can hide a dialog (or any window) by calling:
dialog.setVisible(false);

q  The window’s UI resources are still held!
n  To release a window’s UI resources:

dialog.dispose();

q  Will also hide the dialog if it is currently showing

Logging

n  For large programs and servers, logging is
essential
q  Give developers and users the ability to see,

“What in the world is going on?!”
q  In error scenarios, good logs make debugging the

system much easier
q  In normal operating scenarios, logs can be

analyzed to understand usage patterns
n  Logging services are provided in all major

OSes and widely-used server apps

Information Management (1)

n  Log messages typically divided into levels (priorities)
q  Fatal – the system cannot continue operating
q  Error – the system can handle the situation, but may have

reduced capabilities
q  Warning – a potentially serious condition was encountered,

but its full impact is unclear
q  Info – normal details that users may need to know
q  Trace/Debug – details that only developers, maintainers,

or support personnel would need
n  Logging systems usually provide filtering capabilities

based on what the user wants to know

Information Management (2)

n  Log messages are also grouped by system or
component that reports the log message
q  Again, users can filter based on what components

or systems they wish to monitor
n  Logs can be recorded to several places

q  Most common: the file system
n  Disk usage must be monitored! Log files are typically

“rotated” – N most recent are kept; any older are deleted
q  Database storage is sometimes used
q  Other destinations too: SNMP messages, e-mail

Java Logging Frameworks

n  Several Java logging frameworks to use!
n  Many have sophisticated config options

q  Log storage and management
q  Integration into OS-level logging mechanisms
q  Log formatting – what is in each log message
q  Log filtering based on priority, component, etc.

n  Only slightly more complicated to use than
System.out.println(), and much more powerful
q  Little reason not to incorporate such capabilities!

Apache Log4j

n  One of the most widely used, powerful, flexible
logging frameworks
q  Very mature (released ~1998)
q  Good license! Can be used in commercial projects, etc.

n  Highly configurable via several mechanisms
q  Properties file, XML file, etc.

n  Loggers form a hierarchy of categories
q  Can configure groups of loggers, or individual loggers

n  Log messages have different levels/priorities

Using Log4j

n  Retrieve a logger for a specific category
Logger logger = Logger.getLogger("server.networking");

q  Can easily specify broad categories for application
n  Can also specify logger category with Class object

Logger logger = Logger.getLogger(NetHandler.class);

q  Class’ package-name and class-name is used for
the logging category

n  Each category has exactly one logger
q  Logger.getLogger() always returns the same
Logger object for a particular category name
n  (loggers are created the first time they are requested)

Using Log4j (2)

n  Typically store the logger instance as a constant in
your class

n  Example:
public class BoggleServerApp implements BoggleServer {
 /** My Boggle server's logger. **/
 private static final Logger logger =
 Logger.getLogger("boggle.server");
 ...
}

n  Use simple logging methods in your code:
logger.debug("Sent data to " + hostName);
logger.info("Transfer complete.");
logger.warn("Client dropped connection.");
logger.error("File " + fileName + " not found.");
logger.fatal("Couldn't open socket on port " + port);

Using Log4j (3)

n  Logging methods can also report exceptions
try {
 Socket s = ... // Try to open the socket.
}
catch (Exception e) {
 logger.fatal("Couldn't open socket", e);
}

q  Second argument is a Throwable
q  Log4j sends the full stack-trace to logging output

More Efficient Logging

n  Logging config can “turn off” different log levels
q  Typically only warnings or worse are reported
q  Saves time of actually formatting and storing the log entries

n  Still uses up CPU cycles for the function calls:
logger.debug("Sent data to " + hostName);

q  String allocation, concatenation, garbage-collection
n  Can improve this by guarding debug and info logs

if (logger.isDebugEnabled())
 logger.debug("Sent data to " + hostName);

q  Still has some overhead, but it’s very small
q  Can always turn on debug logs when needed
q  Can’t do this for warn/error/fatal (but you wouldn’t want to!)

Java Logging APIs

n  Added in Java 1.4 (2002)
n  Similar concepts to Log4j in many aspects
n  Significantly less capabilities than log4j

q  Was introduced after Log4j had gained popularity
q  Log4j has many community-provided extensions

n  Only works with Java 1.4+ projects
q  Log4j works with Java 1.2+
q  Definitely not so much of an issue anymore…

n  Basic usage is nearly identical to Log4j
q  Beyond that, the APIs diverge rather quickly

Java Libraries and Logging Frameworks

n  You want to provide a library of Java classes to
other developers, or an embeddable component…

n  If your component needs to use logging, then:
q  Ideally, your library uses same framework as the code that

uses it (Log4j, perhaps?)
q  But, they may have chosen something else! Now they

have to configure and support two different logging APIs.
n  If you can’t guarantee what log framework that other

code will use, use a generic wrapper-API
q  Users of your library can incorporate your library’s reporting

into their logging infrastructure.

Java Libraries, Logging Frameworks (2)

n  One common solution:
q  Apache Commons Logging project

n  http://commons.apache.org/logging/
q  Provides a generic API that wraps other logging

frameworks (e.g. Log4j and Java logging)
q  A bit too clever for its own good

n  Tries to use classloaders in clever ways
n  Can be very painful to use in some circumstances

q  A lot of big projects use commons logging
n  Another solution: create your own wrapper!

Logging Framework Websites

n  Apache Log4j
q  http://logging.apache.org

n  Java Logging APIs
q  http://java.sun.com/j2se/1.5.0/docs/guide/logging

n  Apache Commons Logging
q  http://commons.apache.org/logging/
q  http://www.qos.ch/logging/thinkAgain.jsp

n  “Think again before adopting the commons-logging API”

Preprocessors and Java

n  Java doesn’t have a preprocessor.
n  The good:

q  C/C++-style preprocessors add lots of issues
q  Facilitates binary compatibility of Java classes

n  The bad:
q  Lose lots of flexibility to configure project sources
q  Generating Java code requires extra effort,

purpose-built tools
n  How do you compile out Java source code?

Conditional Compilation

n  Can define “flag variables” in Java programs
static final boolean TRACE_ENABLED = true;
...
if (TRACE_ENABLED)
 logger.trace("Move list: " + genMoveList());

q  Set TRACE_ENABLED = false to disable all trace output
in program.

n  javac compiles out the code if TRACE_ENABLED is
false
q  final: variable can be set only once
q  static: available immediately after the class is loaded
q  A literal value is specified (true or false)
q  Compiler can easily tell that guarded code will never run
q  This is Java’s sole preprocessor-like feature

Conditional Compilation (2)

n  What about this?
static final boolean isTraceEnabled() {
 return false;
}
...
if (isTraceEnabled())
 logger.trace("Move list: " + genMoveList());

q  Java won’t compile out the trace statement here.
n  Conditional compilation is performed in a very

specific set of circumstances.
q  Should be used very rarely, too.

This Week’s Assignment

n  Polish off the client UI behavior
q  Wait for a game to start on a worker thread, so

client UI doesn’t lock up
q  Use dialogs to inform user of progress, errors, etc.

n  Add logging to the server
q  Use Log4j to log when users start a game, when a

game ends, when errors occur, etc.

n  Next week:
q  Packaging up the Boggle program into a JAR file!

