CS11 Advanced Java

Winter 2011-2012
Lecture 7

Today’s Topics

Long-running tasks in Swing apps
A brief overview of Swing dialog windows

Logging
Conditional compilation

Boggle Server

Last week: add the Boggle server!
o RMI calls from clients to server to start/end games

Click the “Start Game” button:

o Client calls the server's startGame () method...
o Client freezes for at least 15 seconds!
2 No Ul updates at all!

Problem:
o RMI call happens on Swing event-dispatch thread!

o No Swing events can be processed while RMI call
IS waiting to return

Swing and Long-Running Tasks

Important rule for Swing Ul programming:

o Don’t perform long-running tasks using the Swing
event-dispatcher thread!

o Blocks the processing of other Swing events, and
all Ul updates, etc.

If a Swing app must do long-running tasks:

o Run the task on a separate worker thread

o Swing Ul code hands the task to the worker
thread, then monitors the worker’s progress

SwingWorker

Swing includes a class to handle long-running tasks

0 javax.swing.SwingWorker

o Creates and manages a worker thread to execute
long-running tasks in a Swing-friendly way

How to use:
o Create a subclass of SwingWorker for your task

o Implement doInBackground () method to perform task
This method is called from the worker thread automatically

o Override done () method to be notified when task is done
This method is called on the event-dispatcher thread
Can update user-interface from within this method!

Subclassing SwingWorker

SwingWorker uses Java generics
0 SwingWorker<T, V>

0 T is the type of the final result produced by task
e.g. for call to Boggle server, T = BoggleBoard

0 Vis the type of any intermediate results produced
Used for tasks that can produce intermediate results
If you don’t need it, just specify Object

Boggle client example:

class StartGameWorker

extends SwingWorker<BoggleBoard, Object>
Task returns a Boggle board
We don’t care about intermediate results, so specify Object

Implementing doInBackground ()

Signhature of doInBackground():
0 protected T doInBackground ()

In your implementation:
o Specify value of T
o Can make the method public as well, but not critical
o If implementation can throw, let the exceptions propagate!
Example:
@Override

public BoggleBoard doInBackground /()
throws PlayerException, RemoteException ({
return server.startGame (playerName) ;

}

Task Completion

The done () method is executed on Swing event-
dispatch thread when task is finished

0 protected void done()

o Default implementation does nothing

o Override done () to perform your own tasks, e.g. updating
your Swing Ul

o For Boggle client:
Display Boggle board returned from server, start timer, etc.

Get worker’s results by calling get () method

o Returns same type as doInBackground ()

o If doInBackground () threw, calling get () will cause an
ExecutionException to be thrown

Using the SwingWorker Class

Simple procedure to use Swing workers:
o Create an instance of the SwingWorker subclass

o Call the execute () method on it
Method starts worker thread, then returns immediately

Your code can call execute () from any thread,
iIncluding event-dispatch thread

SwingWorker object can only be used once

o Cannot reuse a SwingWorker object!
o Just create a new one, then call execute () on it

SwingWorker Notes

Good idea to implement SwingWorker as a private
Inner class

o Can access application’s state directly

o Can manipulate Ul objects directly

The get () method blocks if the task isn’t finished!
o A good reason to call get () from inside done ()

o Can use isDone () method to check if task is finished
SwingWorker has other features too

o Can cancel in-progress tasks
o Can produce intermediate results and monitor progress

Dialog Boxes

Dialog boxes (aka “dialogs”) are pop-up windows
o Report errors or other important messages to the user
o Request specific input values from the user

o Display final results or details of some task to the user

Two kinds of dialogs:

o Modal:

No other window in the application can receive user
input until the dialog window is closed

System-modal dialogs block all applications until closed
o Modeless:

Other windows in the application can still receive user
iInput while dialog window is visible

In Swing, dialog classes derive from JDialog

JOptionPane Dialogs

Swing provides JOptionPane for most
common dialog needs

o Simple informational or error dialogs

o Getting a single field of input from user

o Requesting yes/no-type confirmation from user

JOptionPane doesn’t derive from JDialog!
o Can’t create a JOptionPane and show it directly
o Have to embed a JOptionPane in a dialog object

JOptionPane creates modal dialogs

JOptionPane Dialogs (2)

JOptionPane provides static methods to
handle most common dialog tasks

Example:

JOptionPane.showMessageDialog (frame,
"Error while contacting server:\n" + e.getCause(),
"Server Error", JOptionPane.ERROR MESSAGE) ;

o Shows an error message to the user
o Specify parent frame so that dialog is centered in

the frame
R e S u It . ® Error while contacting server:
D . java.rmi.ConnectException: Connection refused to host: 131.215.45.235; nested exception is:

java.net.ConnectException: Connection refused: connect

JOptionPane Dialogs (3)

Static methods:

0 showMessageDialog(...)
Tell the user about something that has happened
0 showConfirmDialog(...)

Asks a question requiring confirmation, e.g. yes/no, ok/
cancel, etc.

0 showInputDialog(...)
Prompt the user for a single field of input

0 showOptionDialog(...)

The general-purpose version that exposes all of the
above capabilities

Hiding and Disposing Dialogs

Dialogs are shown by calling:
dialog.setVisible (true) ;

o If dialog is modal, this call doesn’t return until
dialog is closed

Can hide a dialog (or any window) by calling:
dialog.setVisible (false) ;

a The window’s Ul resources are still held!

To release a window's Ul resources:
dialog.dispose() ;
2o Will also hide the dialog if it is currently showing

Logging

For large programs and servers, logging is
essential

o Give developers and users the ability to see,
“What in the world is going on?!”

o In error scenarios, good logs make debugging the
system much easier

o In normal operating scenarios, logs can be

analyzed to understand usage patterns
Logging services are provided in all major
OSes and widely-used server apps

Information Management (1)

Log messages typically divided into levels (priorities)

Q

a

Fatal — the system cannot continue operating

Error — the system can handle the situation, but may have
reduced capabilities

Warning — a potentially serious condition was encountered,
but its full impact is unclear

Info — normal details that users may need to know

Trace/Debug — details that only developers, maintainers,
or support personnel would need

Logging systems usually provide filtering capabilities
based on what the user wants to know

Information Management ()

Log messages are also grouped by system or
component that reports the log message

o Again, users can filter based on what components
or systems they wish to monitor
Logs can be recorded to several places

o Most common: the file system

Disk usage must be monitored! Log files are typically
“rotated” — N most recent are kept; any older are deleted

o Database storage is sometimes used
o Other destinations too: SNMP messages, e-malil

Java Logging Frameworks

Several Java logging frameworks to use!
Many have sophisticated config options

Q

Q

d

Q

|_og storage and management
ntegration into OS-level logging mechanisms
_og formatting — what is in each log message

_og filtering based on priority, component, etc.

Only slightly more complicated to use than
System.out.printin(), and much more powerful
o Little reason noft to incorporate such capabillities!

Apache Log4

One of the most widely used, powerful, flexible
logging frameworks

o Very mature (released ~1998)
o Good license! Can be used in commercial projects, etc.

Highly configurable via several mechanisms

o Properties file, XML file, etc.

Loggers form a hierarchy of categories

o Can configure groups of loggers, or individual loggers

Log messages have different levels/priorities

Using Log4;

Retrieve a logger for a specific category

Logger logger = Logger.getlLogger ("server.networking") ;

o Can easily specify broad categories for application

Can also specify logger category with Class object
Logger logger = Logger.getLogger (NetHandler.class)

o Class’ package-name and class-name is used for
the logging category

Each category has exactly one logger

0 Logger.getLogger () always returns the same
Logger object for a particular category name
(loggers are created the first time they are requested)

Using Log4y (2)

Typically store the logger instance as a constant in
your class

Example:

public class BoggleServerApp implements BoggleServer {
/** My Boggle server's logger. **/
private static final Logger logger =
Logger.getlLogger ("boggle. server") ;

}

Use simple logging methods in your code:

logger.debug ("Sent data to " + hostName) ;

logger.info ("Transfer complete.");
logger.warn("Client dropped connection.");
logger.error("File " + fileName + " not found.")
logger.fatal ("Couldn't open socket on port " + port);

Using Log4j (3)

Logging methods can also report exceptions

try
Socket s = ... // Try to open the socket.

}

catch (Exception e) {
logger.fatal ("Couldn't open socket", e);

}
o Second argument is a Throwable

o Log4j sends the full stack-trace to logging output

More Eftticient Logging

Logging config can “turn off” different log levels

o Typically only warnings or worse are reported

o Saves time of actually formatting and storing the log entries

Still uses up CPU cycles for the function calls:
logger.debug("Sent data to " + hostName) ;

o String allocation, concatenation, garbage-collection

Can improve this by guarding debug and info logs

if (logger.isDebugEnabled())
logger.debug("Sent data to " + hostName);

o Still has some overhead, but it's very small
o Can always turn on debug logs when needed
o Can'’t do this for warn/error/fatal (but you wouldn’t want to!)

Java Logging APIs

Added in Java 1.4 (2002)
Similar concepts to Log4j in many aspects

Significantly less capabilities than log4

o Was introduced after Log4j had gained popularity
o Log4j has many community-provided extensions
Only works with Java 1.4+ projects

o Log4j works with Java 1.2+

o Definitely not so much of an issue anymore...
Basic usage is nearly identical to Log4,

o Beyond that, the APIs diverge rather quickly

Java Libraries and Logging Frameworks

You want to provide a library of Java classes to
other developers, or an embeddable component...

If your component needs to use logging, then:

o Ideally, your library uses same framework as the code that
uses it (Log4j, perhaps?)

o But, they may have chosen something else! Now they
have to configure and support two different logging APls.

If you can’t guarantee what log framework that other

code will use, use a generic wrapper-API

o Users of your library can incorporate your library’s reporting
into their logging infrastructure.

Java Libraries, Logging Frameworks (2)

One common solution:
a2 Apache Commons Logging project
http://commons.apache.org/logging/

2 Provides a generic API that wraps other logging
frameworks (e.g. Log4j and Java logging)

2 A bit too clever for its own good
Tries to use classloaders in clever ways
Can be very painful to use in some circumstances

2 A lot of big projects use commons logging
Another solution: create your own wrapper!

‘ Logging Framework Websites

= Apache Log4,
a http://logging.apache.org

= Java Logging APls
o http://java.sun.com/|2se/1.5.0/docs/quide/logging

= Apache Commons Logging
o http://commons.apache.org/logging/

o http://www.qos.ch/logging/thinkAgain.jsp
= “Think again before adopting the commons-logging API”

Preprocessors and Java

Java doesn't have a preprocessor.

The good:

o C/C++-style preprocessors add lots of issues
o Facilitates binary compatibility of Java classes

The bad:

o Lose lots of flexibility to configure project sources

o Generating Java code requires extra effort,
purpose-built tools

How do you compile out Java source code?

Conditional Compilation

Can define “flag variables” in Java programs
static final boolean TRACE ENABLED = true;

if (TRACE ENABLED)

logger.trace("Move list: " + genMovelist());
o Set TRACE _ENABLED = false to disable all trace output
IN program.

javac compiles out the code if TRACE ENABLED is
false -

o final: variable can be set only once

o static: available immediately after the class is loaded

o A literal value is specified (true or false)

o Compiler can easily tell that guarded code will never run

o This is Java’'s sole preprocessor-like feature

Conditional Compilation)

What about this?

static final boolean isTraceEnabled () {
return false;

}

if (isTraceEnabled())
logger.trace("Move list: " + genMovelist())

o Java won't compile out the trace statement here.

Conditional compilation is performed in a very
specific set of circumstances.
o Should be used very rarely, too.

This Week’s Assignment

Polish off the client Ul behavior

o Wait for a game to start on a worker thread, so
client Ul doesn'’t lock up

o Use dialogs to inform user of progress, errors, etc.

Add logging to the server

o Use Log4) to log when users start a game, when a
game ends, when errors occur, etc.

Next week:
o Packaging up the Boggle program into a JAR file!

