CS11 — Advanced Java

Winter 2011-2012
Lecture 6



Today’s Topics

Java object serialization
Networking options!

o TCP networking

o UDP networking

o Remote Method Invocation
o Applicable uses of each

Networked Boggle!



Sertalizing Objects

Often need to convert between objects and a byte-
sequence
o Called “object serialization”
o Converting from byte-sequence back to object is called
“deserialization”

Two main scenarios for object serialization:

1. Saving object state to persistent storage
Convert object into a byte-sequence, then save it to a file
Later, read byte-sequence from file and recreate the object
2. Sending an object to another JVM or computer

Convert object to byte-sequence, then send byte-sequence to
the other JVM

Other JVM converts byte-sequence back into the object



Java Serialization

Provided by two stream implementations:

0 java.io.0ObjectOutputStream
Constructor takes an OutputStream argument
public void writeObject (Object obj)
Among many other capabilities, converts an object to a
byte-sequence describing both type and state details

0 java.io.ObjectInputStream
Constructor takes an InputStream argument
public Object readObject()

Converts a byte-sequence back into an object, using
type and state data in the byte-stream



Java Serialization Protocol

Java serialization protocol is very complete and rich

Each object’s type information is included
o First time a specific type is sent, type details are included

Class-name, field names and types

If class has parent-classes or class-fields, the type info is sent
for those types as well

Each type is assigned an ID
o Subsequently, just the type-ID is sent with an object

Necessary overhead for a generic serialization
mechanism

o A custom-built serialization mechanism would be faster and
generate smaller results...

o ...but, Java's serialization mechanism is very easy to use.



Using Java Serialization ()

Not all objects can be serialized!
o Only ones that implement java.io.Serializable
o Many Java collections, arrays, etc., are serializable

Serializable is a tag interface
o Specifies whether a class can be serialized or not

If a base-class implements Serializable, derived
classes are also serializable

If a base-class doesn’t implement Serializable,
derived classes can implement Serializable...

o But, derived classes must specially handle base-class
serialization and deserialization. (Ugh!)



Using Java Serialization )

Serializable objects must contain serializable data
o All fields in the object must be serializable

o All primitive types are serializable

Any object fields must also be of a serializable type
o Arrays are serializable if all elements are serializable

o Most collection classes in java.util are serializable

If an object (or its contents) isn’t serializable:

0 ANotSerializableException is thrown when
ObjectOutputStream.writeObject () is called



Sertalizing Objects

Objects almost always refer to other objects

Java serialization reads and writes graphs of objects
o Simple graph-traversal algorithm

o When an object is written to the stream, serializer assigns it
a unique ID

Both the object’s ID and its data are written to the stream
o Next time the object is encountered, serializer writes only
the object’s ID
Scenario:
o You create an object and write it to an object-stream.
o Then you change it, and write it to the object-stream again.
o What does the stream’s reader see?



Sertalizing Objects (2)

Scenario:
o You create an object and write it to an object-stream.
o Then you change it, and write it to the object-stream again.

What does the stream’s reader see?

o Unfortunately, reader gets two copies of the original object

o Changes aren't reflected in the stream, since Java
serializer only looks at the object reference, not its state

ObjectOutputStream has a reset () method

o Resets all internal serializer state

o Necessary when resending changes to the same object

o Also generates big overhead as all type details are resent!



Transient Fields

Serializable objects don’t have to serialize all fields

Fields can be marked transient

o Transient fields are not serialized or deserialized

public class ComputeTask implements Serializable {
private transient File outputFile;

}
0 outputFile is not serialized or deserialized

(A good thing: java.io.File is not serializable!)
Exposes Java’'s roots as a networking-friendly

language: explicit language support for serialization



Serialization Strengths and Weaknesses

Serialization is great for sending objects
across a network

o The serialized version isn’t around for very long!

Not so great for persistent storage of
objects

o A common scenario:
1. Serialize objects to a file
2. Add new fields/methods to the serializable classes
3. Try to deserialize your data: Exception!

o Problem: the storage format changed




Serial Version UIDs

Java assigns a “serial version UID” to your class,
based on its fields and field-types

o Version ID is stored with object in output-stream data
o Calculation method can vary from JVM to JVM!

If class changes, serial version UID also changes

o Deserializer reports an error if data-stream’s serial version
UID doesn’t match the class’ current version UID

Can find out a class’ current serial version UID
0 serlalver classname
o Example:

% serialver MyClass
MyClass: static final long serialVersionUID = -1993449670359138314L;



Final Serialization Details

Can customize object-serialization in many ways

o Especially important when supporting multiple serialized
versions of your objects!

o Can also look at java.io.Externalizable interface for
complete control over serialization of object’s data

Serialization can open up security issues!

o Private fields are serialized too — easy to access or change
directly in the raw data stream

o Easy to construct a byte-stream, then deserialize into an
object that you shouldn’t have access to

o Must take these issues into account in secure systems!
Don’t allow serialization, or encrypt/sign serialized data



Serialization Documentation

Java serialization is very well documented by Sun
o http://java.sun.com/javase/6/docs/technotes/guides/serialization/index.html

Can actually look at Sun’s implementation of
serialization and deserialization

o Source-code for Java APl implementation included in JDK

Effective Java also has a section on serialization
o Joshua Bloch
o See Chapter 10 (Serialization) for details




Networked Applications

Networked application design:
o Many communication tools to choose from!

Can implement communications directly, using TCP/
IP or UDP

Can use a higher-level communication mechanism,
like RMI

o Remote Method Invocation
Many other networking libraries available, too

Best tool for the job depends on what the application
IS doing



TCP/IP Networking

TCP = Transmission Control Protocol

IP = Internet Protocol
o TCP is layered on top of IP
o Usually just called TCP

Reliable, ordered, stream-based protocol
Useful when data must be sent and received reliably

Protocol imposes extra overhead, so it is a little
slower than max network capabilities
o This can be tuned in several ways, based on actual usage



Java TCP Communication

TCP communication requires a connection
o Another benefit: you know when your peer disconnects!

Client uses java.net.Socket to connect

o Hostname and port must be specified

Server uses java.net.ServerSocket to accept
connections

0 accept () method must be called for every client that
connects

o Returns a Socket object that can be used to talk to the
client

Socket provides streams for communication



UDP Networking

Universal Datagram Protocol

o Unreliable, unordered, message-based communications
o Packets might arrive in different orders

Sender sends P, then P,

Receiver receives P, then P,

o A packet might arrive multiple times
o A packet may not arrive at all

Messages are called “datagrams”
Good choice when data’s relevance expires quickly
UDP also provides broadcast and multicast features



Java UDP Networking

java.net.DatagramSocket provides UDP
communication

o Very different lifecycle from TCP communications!

When socket is created:
o Socket can be bound to a local address and/or a port
o Socket may be unbound — not associated with any address

Before sending or receiving a datagram (a packet),
socket must be bound to a local address

Socket doesn’t have to connect to a remote host
before sending a datagram to that host
o UDP is a connectionless protocol

o Can connect a socket to a specific host, but then can only
send/receive with that host




Datagrams

DatagramPacket represents datagrams in Java

A datagram contains (among other things):
o The data being sent

o The source address for the datagram

o The destination address for the datagram

Datagrams are routed entirely based on their
internal information

o This is why UDP doesn’t require connections

A program receiving datagrams can determine what
hosts/ports the datagrams are from

o Can send a response back to each sender, even
in absence of an actual connection with the sender



Datagram Data q

The actual data in the datagram is just a byte-array
o Your application specifies the data to send or receive
o The “application-layer protocol”

Can use java.io.ByteArrayOutputStream to
generate datagram data

o Wrap it with a DataOutputStream to write all primitive
data-types

o Wrap with ObjectOutputStream to write primitive types
and objects

Then, use java.io.ByteArrayInputStream to
reconstitute datagram data

o Again, wrap it with an appropriate stream to do conversions



Datagram Data ¢

ByteArrayOutputStream has toByteArray ()
method
o Makes a copy of the internal data! SLOW.

o Subclass ByteArrayOutputStream to provide access to
internal buf and count fields

o Or, provide a copyToByteArray () method that lets the
caller provide an array to copy into.

Much safer approach.
ByteArrayInputStream needs similar trickery

o Provide methods to store new data into the stream, and
reset its position, etc.

Avoid creating extra objects per packet, if possible!



Other UDDP Notes

UDP broadcast usually only works on local subnet

o Routers don’t usually forward broadcast packets
(for obvious reasons)

UDP multicast is also unreliable, unordered
o Routers don’t always support this protocol

Routers may decide to drop UDP packets
o If network is congested, routers drop larger packets first!

o Keeping packets to under 1.5KB is usually safest

Maximum Transmit Unit (MTU) = 1500B for Ethernet,
1492B for PPPoE/DSL



Byte-Ordering Issues

Byte-order is very important in networking protocols

o Different architectures store multibyte values in different
byte-orders

o Little-endian: higher addresses store most significant bits

o Big-endian: lower addresses store most significant bits
Programs typically convert to “network byte-order”
before sending data over the network

o Network byte-order is big-endian

o Ensures a common byte-ordering across different platforms

Java DataInput and DataOutput interfaces
specify big-endian order, so no concerns here!



Remote Method Invocation

Much higher-level networking mechanism

A program exposes objects that can be called from
remote hosts

o Called server objects, or remote objects

o Each remote object has its own string name or path
Client requests access to a remote object, by name
o Client has to connect to machine where remote object is

o Client gets back a stub: it exposes exact same interface,
but is local to the client

Client calls methods on the stub
o Arguments are serialized and sent to the remote object
o Return-value (or exception) is serialized and sent back




RMI Mechanics

Each remote object has its own name
2 An RMI registry (of some form) must be available

o Registry is usually a separate program from JVM
Can also start a registry within the server program

o Server objects must be registered before use
o Clients contact registry to obtain a remote object

Stub is client’s “view” of the remote object

o Stub provides same API as remote object

o Responsible for dispatching calls over the network
and receiving the response for the client



Remote Objects

All remote objects are exposed via interfaces
o Interfaces are derived from java.rmi.Remote

o Remote interfaces define the methods that can be invoked
from other machines

Interface methods must say they can throw
java.rmi.RemoteException
o Many possible failures in remote method invocation!

o The interface implementation itself usually doesn’t throw
RemoteException

o Another step in the invocation process might throw it

All arguments and return-values must be serializable
o Your remote interface can specify exceptions too...
o All exceptions are serializable (Throwable is serializable)



RMI Protocols @)

RMI-JRMP (aka "RMI over JRMP”)

o Java Remote Messaging Protocol

a
a

Calls between Java objects only
Easy, and appropriate for most pure-Java applications

RMI-IIOP (aka “RMI over [IOP")

a
a

o 0 0 o

Internet Inter-ORB Protocol

CORBA: Common Object Request Broker Architecture
Object Management Group (http://www.omg.org)

ORB: Object Request Broker

Can call Java objects from (possibly non-Java) clients

Java clients can call (possibly non-Java) remote objects

Often necessary for large-scale enterprise apps
(Support integration with legacy software or external systems)




RMI Protocols

SOAP

o Simple Object Access Protocol

o XML-based RMI operations, performed over HTTP
“Web-services”

o Also uses many concepts and classes from Java RMI
o Apache Axis2: http://ws.apache.org/axis2/

Choose RMI protocol based on application’s needs
o JRMP is best for “Pure Java” applications, and is default

o |IOP is best for integrating disparate systems (possibly in
different languages) with Java

o SOAP is best for web-application systems, and more
firewall-friendly RMI interactions (can use HTTP port 80)



‘ RMI Components

= RMI Interactions, as of Java 1.5+

IServerStub RMI Pr(/’tg‘ml Rl ey ServerImpl
i JRMP/IIOP :
ClientApp 1n;:pslements "server" 1rr:|[pslements
erver erver
(generated)

= Before Java 1.5:

o Server also had a “skeleton” class for each remote object

o Manually generated stubs and skeletons with rmic tool

o Still need to use rmic for interfacing with Java 1.4 or older
RMI/JRMP systems, or RMI/IIOP systems of any version




Tag Intertaces

Already discussed “Constant Interfaces”

o Java interfaces can include constant declarations

o Constant Interfaces only contain constants; no methods!

o Discouraged because they don't specify a set of behaviors

Another common Java pattern: Tag Interfaces

Q

a

Also called “marker interfaces”

An interface with no methods that can be used to tag sub-
interfaces or objects

No constants either; the interface is completely empty

Indicates that the object supports special usage scenarios,
but object itself doesn’t provide them



Tag Intertaces (2)

Example: java.lang.Cloneable
From API docs:

o A class implements the Cloneable interface to indicate to
the Object.clone () method that it is legal for that
method to make a field-for-field copy of instances of that
class.

Cloneable doesn’t declare any methods!

0 java.lang.Object has an implementation of clone ()

o Implementation throws CloneNotSupportedException
if clone () is called on a non-Cloneable object

Tag interfaces specify behavior... sort of...



Tag Interfaces and Annotations

Tag interfaces were included in Java 1.0

o ...back when annotations simply didn't exist

2 Needed a way to annotate objects, using
then-extant Java language features

With Java 1.5 annotations, tag interfaces
could be phased out
o For example:

@Cloneable annotation for cloneable objects
@Serializable and @Transient annotations

o No such annotations exist... yet...



Tag Interfaces and RMI

Tag interfaces related to RMI:

java.io.Serializable

o Used to tag objects

o “This object can be converted to/from a byte-stream using
the Java object-serialization mechanism.”

java.rmi.Remote

o Used to tag sub-interfaces derived from it

o “Sub-interfaces deriving from Remote can be called from
other processes or machines.”

o “Objects implementing sub-interfaces of Remote can be
exposed in an RMI registry.”



Building Distributed Systems

Different network communications options!
o Different features, strengths, weaknesses

Want to pick the right tool for the job

o Some communications options simply don't
provide the features you need

o Sometimes performance is an issue

o Maximize the results of your efforts

“Constructive laziness”
Use other people’s hard work on these problems.



Networking Choices: UDP

UDP is good for:

o Fast, unreliable communications
e.g. position updates in a networked game

o Clever networking tricks and functionality
Broadcast to subnet — great for auto-discovery of peers
Multicast communications

o Can apply to client-server or peer-to-peer models
o Great for sending event notifications

If you don’t definitely need UDP, consider
using TCP instead (with proper configuration)



Networking Choices: TCP

TCP is good for:

o Reliable, stream-based communications

Slower than UDP, but can definitely be fine-tuned for
your system’s needs!

o Can be applied most easily to client-server model

Peer-to-peer model is perfectly feasible too, but requires
careful design

o Great for moving large amounts of data around

o Also good for control messages or events that
must reach their destination

o Client or server can send data anytime



Networking Choices: RMI

RMI is good for:

o Constructing distributed systems with functionality
exposed entirely as method-calls

o Avoid the hassle of creating a networking protocol

o Entirely request/response-based applications!
Servers cannot fire events back to clients

Clients can periodically poll server for notifications

0 Expensive from a networking standpoint, and slow.
Client could also expose remote objects and a registry
0 Very complicated! But sometimes this is acceptable.

TCP is much better for asynchronous event passing



Networked Boggle!

This week’s lab:
o Get Boggle server up and running with your client!

Most of the server implementation is provided

You have to:

o Get client and server to talk via RMI
Server main () method exposes interface via RMI registry
Client main () method retrieves server’'s remote interface
o Update client to call server to start and end rounds
Update your controller
o Implement the game-scoring portion of the server
Find each client’s unique words, score each client’s words



Boggle Server

Boggle app will use RMI for communications
The hard part:

o How to coordinate players who join the game at different
times??

A simple solution:

o Boggle server interface has two methods:

startGame ()
gameOver ()

o When a client calls server's startGame () method, server
doesn’t allow the call to return until the next round starts

Call to startGame () blocks, until next game actually starts
o Different RMI calls to the server occur on different threads

o Server logic manages the incoming calls to implement this



Boggle Server (2)

Boggle server code you get:
o Code that handles RMI calls from multiple clients

o Code that handles players that join in the middle of a
Boggle round

o Other classes for managing game state

Ready for use in an RMI client/server system, but
you will have to get it working
o Make sure everything is serializable

o Make sure server interface conforms to “remote interface”
requirements

o Get server to expose its remote interface in an RMI registry
o Get client to connect to the server!



