
CS11 – Advanced Java

Winter 2011-2012
Lecture 6

Today’s Topics

n  Java object serialization
n  Networking options!

q  TCP networking
q  UDP networking
q  Remote Method Invocation
q  Applicable uses of each

n  Networked Boggle!

Serializing Objects

n  Often need to convert between objects and a byte-
sequence

q  Called “object serialization”
q  Converting from byte-sequence back to object is called

“deserialization”
n  Two main scenarios for object serialization:

1.  Saving object state to persistent storage
n  Convert object into a byte-sequence, then save it to a file
n  Later, read byte-sequence from file and recreate the object

2.  Sending an object to another JVM or computer
n  Convert object to byte-sequence, then send byte-sequence to

the other JVM
n  Other JVM converts byte-sequence back into the object

Java Serialization

n  Provided by two stream implementations:
q  java.io.ObjectOutputStream

n  Constructor takes an OutputStream argument
n  public void writeObject(Object obj)
n  Among many other capabilities, converts an object to a

byte-sequence describing both type and state details
q  java.io.ObjectInputStream

n  Constructor takes an InputStream argument
n  public Object readObject()
n  Converts a byte-sequence back into an object, using

type and state data in the byte-stream

Java Serialization Protocol

n  Java serialization protocol is very complete and rich
n  Each object’s type information is included

q  First time a specific type is sent, type details are included
n  Class-name, field names and types
n  If class has parent-classes or class-fields, the type info is sent

for those types as well
n  Each type is assigned an ID

q  Subsequently, just the type-ID is sent with an object
n  Necessary overhead for a generic serialization

mechanism
q  A custom-built serialization mechanism would be faster and

generate smaller results…
q  …but, Java’s serialization mechanism is very easy to use.

Using Java Serialization (1)

n  Not all objects can be serialized!
q  Only ones that implement java.io.Serializable
q  Many Java collections, arrays, etc., are serializable

n  Serializable is a tag interface
q  Specifies whether a class can be serialized or not

n  If a base-class implements Serializable, derived
classes are also serializable

n  If a base-class doesn’t implement Serializable,
derived classes can implement Serializable…
q  But, derived classes must specially handle base-class

serialization and deserialization. (Ugh!)

Using Java Serialization (2)

n  Serializable objects must contain serializable data
q  All fields in the object must be serializable
q  All primitive types are serializable

n  Any object fields must also be of a serializable type
q  Arrays are serializable if all elements are serializable
q  Most collection classes in java.util are serializable

n  If an object (or its contents) isn’t serializable:
q  A NotSerializableException is thrown when
ObjectOutputStream.writeObject() is called

Serializing Objects

n  Objects almost always refer to other objects
n  Java serialization reads and writes graphs of objects

q  Simple graph-traversal algorithm
q  When an object is written to the stream, serializer assigns it

a unique ID
n  Both the object’s ID and its data are written to the stream

q  Next time the object is encountered, serializer writes only
the object’s ID

n  Scenario:
q  You create an object and write it to an object-stream.
q  Then you change it, and write it to the object-stream again.
q  What does the stream’s reader see?

Serializing Objects (2)

n  Scenario:
q  You create an object and write it to an object-stream.
q  Then you change it, and write it to the object-stream again.

n  What does the stream’s reader see?
q  Unfortunately, reader gets two copies of the original object
q  Changes aren’t reflected in the stream, since Java

serializer only looks at the object reference, not its state
n  ObjectOutputStream has a reset() method

q  Resets all internal serializer state
q  Necessary when resending changes to the same object
q  Also generates big overhead as all type details are resent!

Transient Fields

n  Serializable objects don’t have to serialize all fields
n  Fields can be marked transient

q  Transient fields are not serialized or deserialized
public class ComputeTask implements Serializable {
 private transient File outputFile;
 ...
}

q  outputFile is not serialized or deserialized
(A good thing: java.io.File is not serializable!)

n  Exposes Java’s roots as a networking-friendly
language: explicit language support for serialization

Serialization Strengths and Weaknesses

n  Serialization is great for sending objects
across a network

q  The serialized version isn’t around for very long!
n  Not so great for persistent storage of

objects
q  A common scenario:

1.  Serialize objects to a file
2.  Add new fields/methods to the serializable classes
3.  Try to deserialize your data: Exception!

q  Problem: the storage format changed

Serial Version UIDs

n  Java assigns a “serial version UID” to your class,
based on its fields and field-types
q  Version ID is stored with object in output-stream data
q  Calculation method can vary from JVM to JVM!

n  If class changes, serial version UID also changes
q  Deserializer reports an error if data-stream’s serial version

UID doesn’t match the class’ current version UID
n  Can find out a class’ current serial version UID

q  serialver classname
q  Example:

% serialver MyClass
MyClass: static final long serialVersionUID = -1993449670359138314L;

Final Serialization Details

n  Can customize object-serialization in many ways
q  Especially important when supporting multiple serialized

versions of your objects!
q  Can also look at java.io.Externalizable interface for

complete control over serialization of object’s data
n  Serialization can open up security issues!

q  Private fields are serialized too – easy to access or change
directly in the raw data stream

q  Easy to construct a byte-stream, then deserialize into an
object that you shouldn’t have access to

q  Must take these issues into account in secure systems!
n  Don’t allow serialization, or encrypt/sign serialized data

Serialization Documentation

n  Java serialization is very well documented by Sun
q  http://java.sun.com/javase/6/docs/technotes/guides/serialization/index.html

n  Can actually look at Sun’s implementation of
serialization and deserialization
q  Source-code for Java API implementation included in JDK

n  Effective Java also has a section on serialization
q  Joshua Bloch
q  See Chapter 10 (Serialization) for details

Networked Applications

n  Networked application design:
q  Many communication tools to choose from!

n  Can implement communications directly, using TCP/
IP or UDP

n  Can use a higher-level communication mechanism,
like RMI
q  Remote Method Invocation

n  Many other networking libraries available, too
n  Best tool for the job depends on what the application

is doing

TCP/IP Networking

n  TCP = Transmission Control Protocol
n  IP = Internet Protocol

q  TCP is layered on top of IP
q  Usually just called TCP

n  Reliable, ordered, stream-based protocol
n  Useful when data must be sent and received reliably
n  Protocol imposes extra overhead, so it is a little

slower than max network capabilities
q  This can be tuned in several ways, based on actual usage

Java TCP Communication

n  TCP communication requires a connection
q  Another benefit: you know when your peer disconnects!

n  Client uses java.net.Socket to connect
q  Hostname and port must be specified

n  Server uses java.net.ServerSocket to accept
connections
q  accept() method must be called for every client that

connects
q  Returns a Socket object that can be used to talk to the

client
n  Socket provides streams for communication

UDP Networking

n  Universal Datagram Protocol
q  Unreliable, unordered, message-based communications
q  Packets might arrive in different orders

n  Sender sends P1 then P2

n  Receiver receives P2 then P1

q  A packet might arrive multiple times
q  A packet may not arrive at all

n  Messages are called “datagrams”
n  Good choice when data’s relevance expires quickly
n  UDP also provides broadcast and multicast features

Java UDP Networking

n  java.net.DatagramSocket provides UDP
communication
q  Very different lifecycle from TCP communications!

n  When socket is created:
q  Socket can be bound to a local address and/or a port
q  Socket may be unbound – not associated with any address

n  Before sending or receiving a datagram (a packet),
socket must be bound to a local address

n  Socket doesn’t have to connect to a remote host
before sending a datagram to that host
q  UDP is a connectionless protocol
q  Can connect a socket to a specific host, but then can only

send/receive with that host

Datagrams

n  DatagramPacket represents datagrams in Java
n  A datagram contains (among other things):

q  The data being sent
q  The source address for the datagram
q  The destination address for the datagram

n  Datagrams are routed entirely based on their
internal information
q  This is why UDP doesn’t require connections

n  A program receiving datagrams can determine what
hosts/ports the datagrams are from
q  Can send a response back to each sender, even

in absence of an actual connection with the sender

Datagram Data (1)

n  The actual data in the datagram is just a byte-array
q  Your application specifies the data to send or receive
q  The “application-layer protocol”

n  Can use java.io.ByteArrayOutputStream to
generate datagram data
q  Wrap it with a DataOutputStream to write all primitive

data-types
q  Wrap with ObjectOutputStream to write primitive types

and objects
n  Then, use java.io.ByteArrayInputStream to

reconstitute datagram data
q  Again, wrap it with an appropriate stream to do conversions

Datagram Data (2)

n  ByteArrayOutputStream has toByteArray()
method
q  Makes a copy of the internal data! SLOW.
q  Subclass ByteArrayOutputStream to provide access to

internal buf and count fields
q  Or, provide a copyToByteArray() method that lets the

caller provide an array to copy into.
n  Much safer approach.

n  ByteArrayInputStream needs similar trickery
q  Provide methods to store new data into the stream, and

reset its position, etc.
n  Avoid creating extra objects per packet, if possible!

Other UDP Notes

n  UDP broadcast usually only works on local subnet
q  Routers don’t usually forward broadcast packets

(for obvious reasons)

n  UDP multicast is also unreliable, unordered
q  Routers don’t always support this protocol

n  Routers may decide to drop UDP packets
q  If network is congested, routers drop larger packets first!
q  Keeping packets to under 1.5KB is usually safest

n  Maximum Transmit Unit (MTU) = 1500B for Ethernet,
1492B for PPPoE/DSL

Byte-Ordering Issues

n  Byte-order is very important in networking protocols
q  Different architectures store multibyte values in different

byte-orders
q  Little-endian: higher addresses store most significant bits
q  Big-endian: lower addresses store most significant bits

n  Programs typically convert to “network byte-order”
before sending data over the network
q  Network byte-order is big-endian
q  Ensures a common byte-ordering across different platforms

n  Java DataInput and DataOutput interfaces
specify big-endian order, so no concerns here!

Remote Method Invocation

n  Much higher-level networking mechanism
n  A program exposes objects that can be called from

remote hosts
q  Called server objects, or remote objects
q  Each remote object has its own string name or path

n  Client requests access to a remote object, by name
q  Client has to connect to machine where remote object is
q  Client gets back a stub: it exposes exact same interface,

but is local to the client
n  Client calls methods on the stub

q  Arguments are serialized and sent to the remote object
q  Return-value (or exception) is serialized and sent back

RMI Mechanics

n  Each remote object has its own name
q  An RMI registry (of some form) must be available
q  Registry is usually a separate program from JVM

n  Can also start a registry within the server program
q  Server objects must be registered before use
q  Clients contact registry to obtain a remote object

n  Stub is client’s “view” of the remote object
q  Stub provides same API as remote object
q  Responsible for dispatching calls over the network

and receiving the response for the client

Remote Objects

n  All remote objects are exposed via interfaces
q  Interfaces are derived from java.rmi.Remote
q  Remote interfaces define the methods that can be invoked

from other machines
n  Interface methods must say they can throw
java.rmi.RemoteException
q  Many possible failures in remote method invocation!
q  The interface implementation itself usually doesn’t throw
RemoteException

q  Another step in the invocation process might throw it
n  All arguments and return-values must be serializable

q  Your remote interface can specify exceptions too…
q  All exceptions are serializable (Throwable is serializable)

RMI Protocols (1)

n  RMI-JRMP (aka “RMI over JRMP”)
q  Java Remote Messaging Protocol
q  Calls between Java objects only
q  Easy, and appropriate for most pure-Java applications

n  RMI-IIOP (aka “RMI over IIOP”)
q  Internet Inter-ORB Protocol
q  CORBA: Common Object Request Broker Architecture

n  Object Management Group (http://www.omg.org)
q  ORB: Object Request Broker
q  Can call Java objects from (possibly non-Java) clients
q  Java clients can call (possibly non-Java) remote objects
q  Often necessary for large-scale enterprise apps

n  (Support integration with legacy software or external systems)

RMI Protocols (2)

n  SOAP
q  Simple Object Access Protocol
q  XML-based RMI operations, performed over HTTP

n  “Web-services”
q  Also uses many concepts and classes from Java RMI
q  Apache Axis2: http://ws.apache.org/axis2/

n  Choose RMI protocol based on application’s needs
q  JRMP is best for “Pure Java” applications, and is default
q  IIOP is best for integrating disparate systems (possibly in

different languages) with Java
q  SOAP is best for web-application systems, and more

firewall-friendly RMI interactions (can use HTTP port 80)

RMI Components

n  RMI Interactions, as of Java 1.5+

n  Before Java 1.5:
q  Server also had a “skeleton” class for each remote object
q  Manually generated stubs and skeletons with rmic tool
q  Still need to use rmic for interfacing with Java 1.4 or older

RMI/JRMP systems, or RMI/IIOP systems of any version

ClientApp

IServerStub
implements
IServer
(generated)

Client Machine (JVM)

RMI Protocol
JRMP/IIOP

ServerImpl
implements
IServer

RMI Registry

"server"

Server Machine (JVM)

Tag Interfaces

n  Already discussed “Constant Interfaces”
q  Java interfaces can include constant declarations
q  Constant Interfaces only contain constants; no methods!
q  Discouraged because they don’t specify a set of behaviors

n  Another common Java pattern: Tag Interfaces
q  Also called “marker interfaces”
q  An interface with no methods that can be used to tag sub-

interfaces or objects
q  No constants either; the interface is completely empty
q  Indicates that the object supports special usage scenarios,

but object itself doesn’t provide them

Tag Interfaces (2)

n  Example: java.lang.Cloneable
n  From API docs:

q  A class implements the Cloneable interface to indicate to
the Object.clone() method that it is legal for that
method to make a field-for-field copy of instances of that
class.

n  Cloneable doesn’t declare any methods!
q  java.lang.Object has an implementation of clone()
q  Implementation throws CloneNotSupportedException

if clone() is called on a non-Cloneable object
n  Tag interfaces specify behavior… sort of…

Tag Interfaces and Annotations

n  Tag interfaces were included in Java 1.0
q  …back when annotations simply didn’t exist
q  Needed a way to annotate objects, using

then-extant Java language features
n  With Java 1.5 annotations, tag interfaces

could be phased out
q  For example:

n  @Cloneable annotation for cloneable objects
n  @Serializable and @Transient annotations

q  No such annotations exist… yet…

Tag Interfaces and RMI

n  Tag interfaces related to RMI:
n  java.io.Serializable

q  Used to tag objects
q  “This object can be converted to/from a byte-stream using

the Java object-serialization mechanism.”
n  java.rmi.Remote

q  Used to tag sub-interfaces derived from it
q  “Sub-interfaces deriving from Remote can be called from

other processes or machines.”
q  “Objects implementing sub-interfaces of Remote can be

exposed in an RMI registry.”

Building Distributed Systems

n  Different network communications options!
q  Different features, strengths, weaknesses

n  Want to pick the right tool for the job
q  Some communications options simply don’t

provide the features you need
q  Sometimes performance is an issue
q  Maximize the results of your efforts

n  “Constructive laziness”
n  Use other people’s hard work on these problems.

Networking Choices: UDP

n  UDP is good for:
q  Fast, unreliable communications

n  e.g. position updates in a networked game
q  Clever networking tricks and functionality

n  Broadcast to subnet – great for auto-discovery of peers
n  Multicast communications

q  Can apply to client-server or peer-to-peer models
q  Great for sending event notifications

n  If you don’t definitely need UDP, consider
using TCP instead (with proper configuration)

Networking Choices: TCP

n  TCP is good for:
q  Reliable, stream-based communications

n  Slower than UDP, but can definitely be fine-tuned for
your system’s needs!

q  Can be applied most easily to client-server model
n  Peer-to-peer model is perfectly feasible too, but requires

careful design
q  Great for moving large amounts of data around
q  Also good for control messages or events that

must reach their destination
q  Client or server can send data anytime

Networking Choices: RMI

n  RMI is good for:
q  Constructing distributed systems with functionality

exposed entirely as method-calls
q  Avoid the hassle of creating a networking protocol
q  Entirely request/response-based applications!

n  Servers cannot fire events back to clients
n  Clients can periodically poll server for notifications

q  Expensive from a networking standpoint, and slow.
n  Client could also expose remote objects and a registry

q  Very complicated! But sometimes this is acceptable.
n  TCP is much better for asynchronous event passing

Networked Boggle!

n  This week’s lab:
q  Get Boggle server up and running with your client!

n  Most of the server implementation is provided
n  You have to:

q  Get client and server to talk via RMI
n  Server main() method exposes interface via RMI registry
n  Client main() method retrieves server’s remote interface

q  Update client to call server to start and end rounds
n  Update your controller

q  Implement the game-scoring portion of the server
n  Find each client’s unique words, score each client’s words

Boggle Server

n  Boggle app will use RMI for communications
n  The hard part:

q  How to coordinate players who join the game at different
times??

n  A simple solution:
q  Boggle server interface has two methods:

n  startGame()
n  gameOver()

q  When a client calls server’s startGame() method, server
doesn’t allow the call to return until the next round starts
n  Call to startGame() blocks, until next game actually starts

q  Different RMI calls to the server occur on different threads
q  Server logic manages the incoming calls to implement this

Boggle Server (2)

n  Boggle server code you get:
q  Code that handles RMI calls from multiple clients
q  Code that handles players that join in the middle of a

Boggle round
q  Other classes for managing game state

n  Ready for use in an RMI client/server system, but
you will have to get it working
q  Make sure everything is serializable
q  Make sure server interface conforms to “remote interface”

requirements
q  Get server to expose its remote interface in an RMI registry
q  Get client to connect to the server!

