CS11 — Advanced Java

Winter 2011-2012
Lecture 5

User-Interface Architecture

Model-View-Controller (MVC)

o A very powerful design pattern for creating user interfaces
Separate GUI applications into three components:
Model

o The actual data that is being displayed and manipulated via
the user interface

View
o The visual representation, displayed in the user interface

Controller

o Receives user inputs from the Ul, and manipulates the
model and the view appropriately

‘ Model-View-Controller Pattern

= Frequently represented like this:

= The View “observes” the Model
o View receives “data changed” notifications from model
o View manages Ul; updates display when model changes
o Most efficient when model indicates exactly what changed

‘ Model-View-Controller Pattern (2)

= The Controller receives input events from the View
0 e.g. ‘user pressed a button” or “user selected a list-item”

o Controller then makes changes to Model, or to View,
depending on user input

Benefits of MVC

Much cleaner Ul architecture! Controller

o Don’t mix model, view, and
controller code together

o Much easier to change/add Model - View
features later

Very easy to add new views
o Views simply register to receive “model changed” events

Can'’t always use MVC approach
o Requires extra code to make model “observable”

o Sometimes model isn’t complex enough to warrant the
extra effort

o For generic, extensible user interfaces, use MVC approach!

Swing and MVC

Many Swing classes follow Model-View-Controller
pattern

Example: javax.swing.JList
0 public JList (ListModel dataModel)

o JList component is a view into a list of data, exposed via
the ListModel interface

o User can interact with the view
View fires ListSelectionEvent objects

You can provide the Model yourself
o Implement the ListModel interface

You also provide the Controller

ListModel Interface

ListModel is a simple interface:
Object getElementAt (int index)
int getSize()
void addListDatalistener (ListDatalListener 1)
void removelistDatalistener (ListDataListener 1)

ListDataListener interface allows view to know
when model's data changes

void intervalAdded (ListDataEvent e)

void intervalRemoved (ListDataEvent e)

void contentsChanged (ListDataEvent e)

o Model fires these list-data events
o View updates its appearance; resyncs Ul with model state

ListModel Implementations

Most Swing apps don’t need sophisticated models

Swing has default impls. of model interfaces
o Provide code to fire events based on model changes
o Programmer only has to specify what is being stored

javax.swing.DefaultListModel

o Provides API similar to java.util.Vector or java.util.List

o Store Object values at specific indexes in the model

0 toString () method is used to display each object’s value
o When data changes, fires events that JList receives

JList Diagram

= Model-View-Controller components of JList:

ListSelectionEvents

——————

= JList observes ListDataModel via events
= Controller gets user input via list-selection events

= Controller manipulates both JList and ListDataModel
based on user input, etc.

New Concept: Observable Objects!

So far, only Ul components fire events
0 e.g. when user does something

Can also make data objects that fire events when
their data changes

Called the Observer pattern
o Also known as Publish-Subscribe (or “pubsub” for short)

Observable data object publishes change-
notifications

Interested observers subscribe to these notifications

Observer Pattern 1n Java

Java provides two utility types for this pattern

java.util.Observable base-class
addObserver (Observer o)
boolean hasChanged()
notifyObservers (Object argqg)
o A data object can derive from Observer
o Argument to notifyObservers () can specify exactly
what changed
java.util.Observer interface
void update (Observable o, Object arg)

o An observer can implement this interface, then register on
one or more Observable objects

o Use Observable and argument to know what happened

Problems with Java Obserwvable...

A few big limitations of Observable ®

It's a base-class, not an interface

o If your data-object needs to derive from something else,
you can’t use these classes

o No multiple-inheritance in Java

o When you design classes like this, prefer interfaces to
base-classes!

Effective Java, ltem 16 for more details on this!

Only have one notification method, with an Object
argument!
o No type constraints on argument...

o Can’t provide multiple methods that handle different kinds
of data-change events (e.g. data-added, data-removed, ...)

Swing and Observer Patterns

Lists, trees, tables all use MVC pattern

o All have observable models

o Models and their observers are specified using interfaces
0 (None of them use java.util.Observable...)

You can emulate this pattern too.
o FooModel
The data model interface
o FooDataEvent (a subclass of java.util. Event)
Describes some change in the Foo model
Different event-types specify different kinds of changes
o FooDatalListener (a subinterface of java.util.EventListener)
Observers of FooModel implement this interface
Provide several interface methods, for different data changes

Controllers

Application’s Controller handles events from View
o (possibly also events from other sources...)
o Updates Model (and possibly Views) based on user input

Controller needs access to the Model and the Views

For large apps, controller can be a separate
top-level class

o References to Model and Views are passed to Controller
For small apps, controller can be an inner class that
implements Ul event-listener interfaces

o Can access enclosing class’ fields and methods

o Can operate on Model and View(s) directly

Boggle User Intertace

This week, should finish off most of Boggle client

user-interface

Too simple to apply MVC
at application-level...

Some parts will use MVC

o List of words is a JList;
definitely uses MVC

o Boggle-board is kinda MVC,
but board doesn’t change
Should have one Controller

o Probably an inner class of
Boggle app

Boggle!

Your words:

esh
nsr
WSS
oiier
werr
nieur
snhei
iweu
ieurrw
ise

EBX

»'.I'ime”R»émaining: 0:39

0|1 |U|R
E | |E|R

U|/N|S W
R|E|S | I

oiieurrwsneuer|/~

Add Word Clear Word

Boggle Ul Controller

Boggle Controller should be easy

o All Ul components fire o LEE

ActionEvents

. Your words: Time Remaining: 0:39

o Controller is just an esn Tol 1 lulr

ActionListener handler |

that encodes app logic |oiier El] | EIR
Apps are usually more - friew uln!lslw
complex, in general weu clElS] |
a Several different kinds oo -

of events to handle oilewrrwsnever -l RIS uluCleaion

Scrollable Lists

Need to support scrolling in our list of words
o Sometimes can exceed display-size of list

Swing components don't provide scrolling
themselves!

0 javax.swing.JScrollPane
wraps another Swing component

o Adds scrolling capabillities to the
component

Called the Decorator pattern

o Can configure scroll-pane for
when scrollbars appear, etc.

viewport scrollbars

Inner Classes vs. Nested Classes

Java has inner classes and nested classes
o What are the differences between the two, if any?

A class can contain class declarations
o All such declarations are called nested classes

Nested classes can be static or non-static
o Non-static nested classes are called inner classes

Inner Classes

May have used inner classes extensively
o Particularly good for Ul event-handler code

Obijects of an inner-class type can access the
enclosing class’ members
o Embedded within outer-class object outer-class

object

o Inner-class objects must be
constructed in context of an |
enclosing object M iosts

o Cannot create an inner class
within a static method

Inner Class Example

Will this work?

public class MyApp {

private class ActionHandler implements Actionlistener

{ ... 1}

private static void initGUI () ({
JFrame f = new JFrame ("My App!");
JButton b = new JButton("Go") ;

ActionHandler h = new ActionHandler () ;
b.addActionListener (h) ;

No!
o Inner class can only be created in context of an outer object
o e.g. can only construct inner class where this is defined

o Static methods cannot construct inner classes

Inner Class Example (2)

Need to change Ul init code to be nonstatic:
public class MyApp {

private class ActionHandler implements Actionlistener
{ ...}
private void initGUI() {

JFrame f = new JFrame ("My App!");

JButton b = new JButton("Go") ;

ActionHandler h = new ActionHandler () ;
b.addActionListener (h) ;

This can affect how some operations are performed

Inner Class Example (3)

Example code:

public class MyApp {
private JButton btn;

private class Handler implements ActionListener ({
public void actionPerformed (ActionEvent e) {
String cmd = e.getActionCommand() ;
if (cmd.equals("stop"))

. e)
btn.setEnabled (false) ’ MyApp object

} JButton btn

Handler object
accesses outer

o Inner class can access enclosing object’ s members
object’s members C J

Inner Class Implementation

When inner class is constructed, it is implicitly passed
a reference from the enclosing object

private void initGUI () { (MWAPPOMGd

btn = new JButton("Go") ;

Handler h = new Handler () ;
btn.addActionlListener (h) ;

~

JButton btn

- J

o Compiler generates code like this: Handler object
Handler h = new Handler (this); MyApp ref — |

When Handler refers to MyApp members, |
compiler uses reference to parent
if (cmd.equals(stop))
btn.setEnabled(false) ;
Compiler generates code like this:
ref .btn.setEnabled (false) ;

More Inner-Class Details

Can construct an inner class from outside the
enclosing class!

class Foo {
class Bar {

}

public static void main(String[] args) {
// DOESN'T COMPILE!
Bar b = new Bar();

// OK:
Foo £ = new Foo();
Bar b = f.new Bar(); // specify outer obj.

Even More Inner-Class Details

Inner class can use/return enclosing-object reference

class Foo {
class Bar {
Foo getMyFoo () ({
return Foo.this;

}
}

public static void main(String[] args) {
Foo £ new Foo () ;
Bar b f.new Bar();

// This prints true:
System.out.println(f == b.getMyFoo()) ;

Static Nested Classes

Can also create static nested classes
o Useful for grouping very closely related classes
o (Alternative is to use packages, of coursel!!)
Example:
public class ImageProcessor {
/** Encapsulates image details. */

public static class ImagelInfo ({
int width, height;

}
Static nested classes have no enclosing object
o Is simply a class declaration nested within another class

Static Nested Classes (2)

Inside the outer class, can use inner class like any
other class

public class ImageProcessor {
/** Encapsulates image details. **/
public static class ImageInfo { ... }

public ImageInfo getImage (String filename) ({
ImageInfo info = new ImageInfo(...);

£é£urn info;
}
Outside outer class, must specify qualified name of
Inner class

ImageProcessor proc = ...
ImageProcessor.ImageInfo info =
proc.getImage ("image.png") ;

Static Nested Classes (3)

Can create static nested classes in static methods
o Static nested classes don’t have an enclosing object

ImageProcessor.ImageInfo info =
new ImageProcessor.ImageInfo(...)

Static Nested Classes and Java API

Static nested classes used in several Java
APl packages

Example: java.awt.geom.Point2D
a An abstract 2D point class

0 Point2D contains two static nested classes:

Float

2 A concrete subclass of Point2D with £loat coordinates
2 Full name is Point2D.Float

Double

0 A concrete subclass of Point2D with double coordinates
0 Full name is Point2D.Double

This Week’s Assignment

= Complete the Boggle client user interface

o Create the Ul layout

o Create a Controller to
manage everything

o Work with JList and
ListModel
= | will give you most of
the timer code

o Too much to write
In one lab...

Your words:

Start Game
Time Remaining: 0:39

esn
nsr
WSS
oiier
werr
nieur
snhei
iweu
ieurrw
ise

oiieurrwsneuer~|

O I

Clear Word

