
CS11 – Advanced Java

Winter 2011-2012
Lecture 5

User-Interface Architecture

n  Model-View-Controller (MVC)
q  A very powerful design pattern for creating user interfaces

n  Separate GUI applications into three components:
n  Model

q  The actual data that is being displayed and manipulated via
the user interface

n  View
q  The visual representation, displayed in the user interface

n  Controller
q  Receives user inputs from the UI, and manipulates the

model and the view appropriately

Model-View-Controller Pattern

n  Frequently represented like this:

n  The View “observes” the Model
q  View receives “data changed” notifications from model
q  View manages UI; updates display when model changes
q  Most efficient when model indicates exactly what changed

Model View

Controller

method calls

events

Model-View-Controller Pattern (2)

n  The Controller receives input events from the View
q  e.g. “user pressed a button” or “user selected a list-item”
q  Controller then makes changes to Model, or to View,

depending on user input

Model View

Controller

Benefits of MVC

n  Much cleaner UI architecture!
q  Don’t mix model, view, and

controller code together
q  Much easier to change/add

features later
n  Very easy to add new views

q  Views simply register to receive “model changed” events
n  Can’t always use MVC approach

q  Requires extra code to make model “observable”
q  Sometimes model isn’t complex enough to warrant the

extra effort
q  For generic, extensible user interfaces, use MVC approach!

View View Model

Controller

View

Swing and MVC

n  Many Swing classes follow Model-View-Controller
pattern

n  Example: javax.swing.JList
q  public JList(ListModel dataModel)
q  JList component is a view into a list of data, exposed via

the ListModel interface
q  User can interact with the view

n  View fires ListSelectionEvent objects
n  You can provide the Model yourself

q  Implement the ListModel interface
n  You also provide the Controller

ListModel Interface

n  ListModel is a simple interface:
Object getElementAt(int index)
int getSize()
void addListDataListener(ListDataListener l)
void removeListDataListener(ListDataListener l)

n  ListDataListener interface allows view to know
when model’s data changes

void intervalAdded(ListDataEvent e)
void intervalRemoved(ListDataEvent e)
void contentsChanged(ListDataEvent e)

q  Model fires these list-data events
q  View updates its appearance; resyncs UI with model state

ListModel Implementations

n  Most Swing apps don’t need sophisticated models
n  Swing has default impls. of model interfaces

q  Provide code to fire events based on model changes
q  Programmer only has to specify what is being stored

n  javax.swing.DefaultListModel
q  Provides API similar to java.util.Vector or java.util.List
q  Store Object values at specific indexes in the model
q  toString() method is used to display each object’s value
q  When data changes, fires events that JList receives

JList Diagram

n  Model-View-Controller components of JList:

n  JList observes ListDataModel via events
n  Controller gets user input via list-selection events
n  Controller manipulates both JList and ListDataModel

based on user input, etc.

ListDataModel
(fires ListChangeEvents)

Controller (your app)
(provides ListSelectionListener)

JList
(provides ListDataListener)

ListSelectionEvents

New Concept: Observable Objects!

n  So far, only UI components fire events
q  e.g. when user does something

n  Can also make data objects that fire events when
their data changes

n  Called the Observer pattern
q  Also known as Publish-Subscribe (or “pubsub” for short)

n  Observable data object publishes change-
notifications

n  Interested observers subscribe to these notifications

Observer Pattern in Java

n  Java provides two utility types for this pattern
n  java.util.Observable base-class

n  addObserver(Observer o)
n  boolean hasChanged()
n  notifyObservers(Object arg)

q  A data object can derive from Observer
q  Argument to notifyObservers() can specify exactly

what changed
n  java.util.Observer interface

n  void update(Observable o, Object arg)
q  An observer can implement this interface, then register on

one or more Observable objects
q  Use Observable and argument to know what happened

Problems with Java Observable…

n  A few big limitations of Observable L
n  It’s a base-class, not an interface

q  If your data-object needs to derive from something else,
you can’t use these classes

q  No multiple-inheritance in Java
q  When you design classes like this, prefer interfaces to

base-classes!
n  Effective Java, Item 16 for more details on this!

n  Only have one notification method, with an Object
argument!
q  No type constraints on argument…
q  Can’t provide multiple methods that handle different kinds

of data-change events (e.g. data-added, data-removed, …)

Swing and Observer Patterns

n  Lists, trees, tables all use MVC pattern
q  All have observable models
q  Models and their observers are specified using interfaces
q  (None of them use java.util.Observable…)

n  You can emulate this pattern too.
q  FooModel

n  The data model interface
q  FooDataEvent (a subclass of java.util.Event)

n  Describes some change in the Foo model
n  Different event-types specify different kinds of changes

q  FooDataListener (a subinterface of java.util.EventListener)
n  Observers of FooModel implement this interface
n  Provide several interface methods, for different data changes

Controllers

n  Application’s Controller handles events from View
q  (possibly also events from other sources…)
q  Updates Model (and possibly Views) based on user input

n  Controller needs access to the Model and the Views
n  For large apps, controller can be a separate

top-level class
q  References to Model and Views are passed to Controller

n  For small apps, controller can be an inner class that
implements UI event-listener interfaces
q  Can access enclosing class’ fields and methods
q  Can operate on Model and View(s) directly

Boggle User Interface

n  This week, should finish off most of Boggle client
user-interface

n  Too simple to apply MVC
at application-level…

n  Some parts will use MVC
q  List of words is a JList;

definitely uses MVC
q  Boggle-board is kinda MVC,

but board doesn’t change
n  Should have one Controller

q  Probably an inner class of
Boggle app

Boggle UI Controller

n  Boggle Controller should be easy
q  All UI components fire

ActionEvents
q  Controller is just an

ActionListener handler
that encodes app logic

n  Apps are usually more
complex, in general
q  Several different kinds

of events to handle

Scrollable Lists

n  Need to support scrolling in our list of words
q  Sometimes can exceed display-size of list

n  Swing components don’t provide scrolling
themselves!
q  javax.swing.JScrollPane

wraps another Swing component
q  Adds scrolling capabilities to the

component
n  Called the Decorator pattern

q  Can configure scroll-pane for
when scrollbars appear, etc.

viewport scrollbars

Component’s
actual extent

Inner Classes vs. Nested Classes

n  Java has inner classes and nested classes
q  What are the differences between the two, if any?

n  A class can contain class declarations
q  All such declarations are called nested classes

n  Nested classes can be static or non-static
q  Non-static nested classes are called inner classes

Inner Classes

n  May have used inner classes extensively
q  Particularly good for UI event-handler code

n  Objects of an inner-class type can access the
enclosing class’ members
q  Embedded within outer-class object
q  Inner-class objects must be

constructed in context of an
enclosing object

q  Cannot create an inner class
within a static method

outer-class
object

 inner-class

objects

Inner Class Example

n  Will this work?
public class MyApp {
 ...
 private class ActionHandler implements ActionListener
 { ... }

 private static void initGUI() {
 JFrame f = new JFrame("My App!");
 JButton b = new JButton("Go");
 ...
 ActionHandler h = new ActionHandler();
 b.addActionListener(h);
 ...

n  No!
q  Inner class can only be created in context of an outer object
q  e.g. can only construct inner class where this is defined
q  Static methods cannot construct inner classes

Inner Class Example (2)

n  Need to change UI init code to be nonstatic:
public class MyApp {
 ...
 private class ActionHandler implements ActionListener
 { ... }

 private void initGUI() {
 JFrame f = new JFrame("My App!");
 JButton b = new JButton("Go");
 ...
 ActionHandler h = new ActionHandler();
 b.addActionListener(h);
 ...

n  This can affect how some operations are performed

Inner Class Example (3)

n  Example code:
public class MyApp {
 private JButton btn;

 private class Handler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if (cmd.equals("stop"))
 btn.setEnabled(false);
 }
 }
 ...

q  Inner class can access enclosing
object’s members

MyApp object

Handler object
accesses outer
object’s members

JButton btn

Inner Class Implementation

n  When inner class is constructed, it is implicitly passed
a reference from the enclosing object

private void initGUI() {
 btn = new JButton("Go");
 Handler h = new Handler();
 btn.addActionListener(h);
 ...

q  Compiler generates code like this:
 Handler h = new Handler(this);

n  When Handler refers to MyApp members,
compiler uses reference to parent

if (cmd.equals(stop))
 btn.setEnabled(false);

n  Compiler generates code like this:
 ref.btn.setEnabled(false);

MyApp object

JButton btn

Handler object

MyApp ref

More Inner-Class Details

n  Can construct an inner class from outside the
enclosing class!

class Foo {
 class Bar {
 ...
 }

 public static void main(String[] args) {
 // DOESN'T COMPILE!
 Bar b = new Bar();

 // OK:
 Foo f = new Foo();
 Bar b = f.new Bar(); // specify outer obj.
 }
}

Even More Inner-Class Details

n  Inner class can use/return enclosing-object reference

class Foo {
 class Bar {
 Foo getMyFoo() {
 return Foo.this;
 }
 }

 public static void main(String[] args) {
 Foo f = new Foo();
 Bar b = f.new Bar();

 // This prints true:
 System.out.println(f == b.getMyFoo());
 }
}

Static Nested Classes

n  Can also create static nested classes
q  Useful for grouping very closely related classes
q  (Alternative is to use packages, of course!!)

n  Example:
public class ImageProcessor {
 /** Encapsulates image details. */
 public static class ImageInfo {
 int width, height;
 ...
 }
 ...
}

n  Static nested classes have no enclosing object
q  Is simply a class declaration nested within another class

Static Nested Classes (2)

n  Inside the outer class, can use inner class like any
other class

public class ImageProcessor {
 /** Encapsulates image details. **/
 public static class ImageInfo { ... }

 public ImageInfo getImage(String filename) {
 ImageInfo info = new ImageInfo(...);
 ...
 return info;
}

n  Outside outer class, must specify qualified name of
inner class

ImageProcessor proc = ...
ImageProcessor.ImageInfo info =
 proc.getImage("image.png");

Static Nested Classes (3)

n  Can create static nested classes in static methods
q  Static nested classes don’t have an enclosing object

ImageProcessor.ImageInfo info =
 new ImageProcessor.ImageInfo(...);

Static Nested Classes and Java API

n  Static nested classes used in several Java
API packages

n  Example: java.awt.geom.Point2D
q  An abstract 2D point class
q  Point2D contains two static nested classes:

n  Float
q  A concrete subclass of Point2D with float coordinates
q  Full name is Point2D.Float

n  Double
q  A concrete subclass of Point2D with double coordinates
q  Full name is Point2D.Double

This Week’s Assignment

n  Complete the Boggle client user interface
q  Create the UI layout
q  Create a Controller to

manage everything
q  Work with JList and

ListModel
n  I will give you most of

the timer code
q  Too much to write

in one lab…

