CS11 — Advanced Java

Winter 2011-2012
Lecture 4

Today’s Topics

No real programming topics today!

Project management tools:

o Automating the build process
0 Source-code management tools

This week'’s focus:

o Get your project into better structural shape

o Automate your project’s build process

o Get your sources into a version-control system

The Build Process

We have multiple steps for our project now:

o Compile our code, and our unit-test code

2 Run javadoc to generate APl documentation

2 Run unit-tests and check the results

This is a lot of work!

o Automate this process to make it faster and easier

Current structure is also pretty messy!

o Program code and test code are in same directory
o Libraries and generated . class files in there too!

Apache Ant

Ant is a platform-independent build tool
o Written entirely in Java
o Takes abuild.xml file describing build process

o Pluggable architecture with many build tasks
Compile Java sources
Run javadoc
Run JUnit or TestNG test suites and generate a report
Perform code-generation steps (e.g. for J2EE projects)
Move/copy/delete files, create/remove directories
Send e-mails or other notifications
Interact with source-code repositories

Example build.xml File

<project name="myproject" default="compile" basedir=".">

<!-- Global properties used in build -->

/> Use Ant properties to

<property name="srcDir" location="src" _ _
<property name="buildDir" location="build"/> specify config values
<property name="buildClassesDir" in one place.
location="${buildDir}/classes" />
<target name="-init"> <!-- Initialization target -->
<tstamp/>
<mkdir dir="${buildDir}" />
</target>

<target name="compile" depends="-init"

description="Build the project sources.">

<mkdir dir="${buildClassesDir}" />
<javac destdir="${buildClassesDir}">
<src path="${srcDir}" />
</javac>
</target>

Targets can specify
their dependencies.
They specify a series
of tasks to complete.

</project>

Running Ant

Ant executable is called ant

Just type ant by itself to build default target
0 build. xml specifies the default build target

Specify target(s) to run at command-line

ant clean test doc

Can also specify other options
o Verbose output: -v Or -verbose

o Set Java properties: -DpropName=value
2 Many more!

Ant Properties

Properties are simple name-value pairs

o Both name and value are strings

o Can be specified at top of project file

o Can be specified inside a build task

o Use property’s value by wrapping it in $ {propName}

Example:

<property name="buildDir" value="build" />
<property name="codegenDir" value="${buildDir}/codegen" />

Properties can be set once!
o If specified again elsewhere, it is silently ignored

o (run ant -verbose to see details of when properties are
set, and when they are “set” multiple times...)

Ant Properties (2)

A nifty example:

<target name='"debug" description="Set up for debug build">
<property name="java.debug" value="on" />
<property name='"java.opt" value="off" />

</target>

<target name='"release" description='"Set up release build">
<property name="java.debug" value="off" />
<property name='"java.opt" value="on" />

</target>

<target name='"compile" depends='"debug'">
<javac debug="${java.debug}" optimize="${java.opt}" ... />
</target>

o By default, compilation will use debug settings.

o To override at command-line, do this:
ant release compile

Ant Build Targets

<target> tags specify the build targets
o Each target has a name:

<target name="compile">

o Targets can also be given descriptions

<target name="compile"
description="Compile the sources!">

o Names starting with a hyphen cannot be specified
on command-line (“internal use only” tasks)

<target name="-init">

Target Dependencies

Targets can also have dependencies
o Ant performs dependency analysis at build time

o Executes all required tasks, in the proper order
<target name="-init" />
<target name="clean" depends="-init" />
<target name="compile" depends="-init" />
<target name="test" depends="compile" />

0 YOU run ant test

o Ant executes —init, compile, and test targets
In that order

Project Help!

Don’'t know what targets are available?
ant —-projecthelp

o Lists all build targets that have descriptions

o Also prints out any description you specify
at top of build.xml file

Example:

<project name="paint" default="compile" basedir=".">
<description>
A simple program for drawing images.
</description>

</project>

Project Directory Structure

So far, everything has been in one directory
o Project sources, test sources, .classfiles, ...

A much better approach: Use different directories
o Source code stays in its own directory structure

o Generated files (. class files, etc.) go somewhere else!
o Protects sources from overwriting during build process
o Makes build cleanup easy: Just blow away the build dir!

Similarly, separate test sources from project sources
o Shouldn’t be part of final package, so keep them separate

Any other resources, docs, images, etc. also go in
their own directories

Example Project Structure

src Project sources

lib Libraries that your project requires

test Test source-code

res Resources: images, grammars, config, ...
doc Design documents, manual (not javadocs)
build Generated results go here

0 codegen Generated Java sources (if any)

0 classes .class files generated by javac

0 javadoc Generated APIl documentation

0 tests Compiled test classes from javac

0 results Output logs from running test suite

o Generated jar file(s) can stay in build directory

Ant and Project Structure

Using our Ant properties, specify relevant directories at top of
build.xml file
<property name="srcDir" location="src" />
<property name="buildDir" location="build"/>
<property name="buildClassesDir"
location="${buildDir}/classes" />

o Use earlier Ant properties to specify subdirectory paths

In Ant targets, refer to relevant directories using properties

<target name="compile" depends="debug">

<mkdir dir="${buildClassesDir}" />

<javac destdir="${buildClassesDir}"

classpathref="1libs.path'">
<src path="${srcDir}" />

</javac>

</target>

Common Concepts and Types

Ant has several concepts that most tasks use
FileSet: a group of files within a directory

o Specified with <£ileset> element

Base-directory of FileSet typically specified with dir attribute
o Very sophisticated path-matching capabilities
Include or exclude files that match specific patterns

A very simple example:

o A file-set of all test sources, except those in the
subpackage foo, where the sources aren'’t ready yet:

<fileset dir="${testSrcDir}">
<include name="**/Test*.java" />
<exclude name="**/foo/**" />
</fileset>

** wildcard matches
zero or more directory
levels

o Many Ant tasks can function as a FileSet as well

Common Concepts and Types (2)

Path-Like Structures:

o A mechanism for constructing sophisticated classpaths and
other sets of paths

o Frequently used on tasks that compile or run Java code

Example: classpaths

<classpath>
<pathelement location="${1libDir}/foo.jar" />
<pathelement location="${buildClassesDir}" />
</classpath>

o Can also contain FileSets:
<classpath>
<fileset dir="${1libDir}" includes="*.jar" />
</classpath>

Common Concepts and Types (3)

Can also create path-references
o For defining several paths that refer to each other

Example:

o One path for running the project itself, and a separate path
for running the project’s tests

<path id="libs.path">
<fileset dir="${1libDir}" includes="*.jar" />

</path>
<path id="test.path">
<path refid="libs.path" />
</path>
o Tasks refer to these with attributes like:
<javac classpathref="test.path" ... >

Ant Summary

Ant is used extensively for many Java projects!

Many powerful techniques

o Conditional compilation based on the current OS

Ant tasks that are implemented in a scripting language
Configuration loaded from properties files

Update build numbers and substitute values into code
Perform version-control tasks

Update website details

Perform SSH/FTP tasks

L O U0 0 0 0 O

http://ant.apache.org

Source Code Management

You are working on a large software project...

Problem 1: You break the code
o Need to roll back to a previous version that works

Problem 2: Other people also working on project
o ...perhaps on the exact same source files

Problem 3: Centralized source of project info?

o Maybe a website that shows current test pass-rate, most
recent API docs, etc.

A source code management system can solve all of
these problems, and many more

Managing the Source Code

Basic idea:
o Store all project files in a repository
o Repository keeps track of all changes to any file

o Copies of the project are “checked out” from the
repository

o Developers are isolated from others’ changes

o Changes to project files are “checked in” or
“committed” back to the repository, when ready.

o Multiple changes to the same file are merged
Automatically, if possible; otherwise, manually!

Distributed Version Control

A new trend in version control systems:
o Don’t use a central repository server!

Distributed version control systems
o Each user has a local repository
o Users work against their own local repository
Check out a working copy, make edits, then check in
o Users can synchronize with other repositories very easily

Great for widely distributed software development
o Open-source software, for example

Used less often in commercial development teams
o Software companies prefer to have a single central server
o Can still use DVCS in a centralized manner, though

Version Control Systems

Commercial centralized version control systems:
o Perforce, Visual SourceSafe, BitKeeper, ...

Open-source centralized version control systems:
o Subversion — written as a replacement for CVS

Open-source distributed version control systems:
o Git — written by Linus Torvalds

Used for Linux kernel development, Eclipse, PostgreSQL, ...

o Mercurial (hg) — distributed VCS written in Python
Used by Python project, vim, OpenOffice, GNU Octave, ...
ao Bazaar — also written in Python
Used by Ubuntu project, GNU Emacs, MySQL, ...

Using Subversion

Two main commands in Subversion:

0 svn
Program used by developers to access the repository
Can check out files, check in, move, delete, etc.

0 svnadmin
The repository administration tool

Used rarely, by repository administrator
Both programs take commands

o Example: svn checkout
o Both have a help command:

svn help Oor svn help command

Setting Up a Repository

Start by creating a repository
o Repository contains all the config and data files

o Command:
svnadmin create /path/to/repository

o Can be an absolute or relative path
Can create your repository on the CS cluster

svnadmin create ~/csll/advjava/svnrepo
Subversion can use different storage layers
o Filesystem storage, or BerkeleyDB
o Default is filesystem — use that!

Accessing the Repository

Subversion uses URLs to refer to repositories
o Supports access via HTTP, if needed
For local access, use a file:// URL

2 On CS cluster:
file://[Ihome/user/cs11/advjaval/svnrepo

Subversion also supports remote access
o svn:/l... URL for use of Subversion’s server
a Or, svn+ssh://... URL for accessing over SSH

For accessing CS cluster repository remotely:

svn+ssh://luser@login.cs.caltech.edu/home/user/cs11/advjava/svnrepo

Importing Source Code

Need to import initial project source into repository
0 svn import does this

o Recursively adds a whole directory tree to repository

Lay out your repository in a reasonable way

o Each project (or subproject) should have its own directory
o Create subdirectories based on good project structure

For Boggle project:

boggle/src

boggle/test

etc. (not boggle/build!)
Subversion lets you move files/directories later, too
o Just in case you make a mistake...

Importing Source Code (2)

Go to directory with your source files
o Clean up *.class files, *~, etc.
o Don’t want to import those!

Import the directory tree into the repository
o Usually want to specify a subproject to use

svn import file:///home/user/csll/advjava/svnrepo \
boggle

o Subversion will add all files in the local directory
(and subdirectories!) into a boggle subdirectory
of your repository

Working On Your Project

Now, repository is the central store of all
versions of all files

o Can check out any version of any file
o Usually want the most recent version to work with

Retrieve a working copy of your project
2 A local copy of a particular version of the files
2 You can make changes in isolation

o Can periodically sync up with other changes that
have occurred

o Once your local copy works properly, check it in!

Checking Out Files

To check out files:

o svn checkout url
o URL specifies both repository location, and directory within
repository

Example: to get Boggle project from repository:

svn checkout \
file:///home/user/csll/advjava/svnrepo/boggle

o Wil create a local directory named boggle, with project
files in it

To update local working copy:
svn update

o If performed within working copy, no URL needed!

Working with ILocal Files

Can add new files using add command

o From within working copy:
svn add pathl path2 ...

o Can add whole directories
Subversion will recurse through directory’s contents
Can delete files using delete command
o Again, within working copy:
svn delete pathl path2 ...
Can move files using move command

svn move frompath topath

Committing Changes

Changes to working copy must be committed before
they are visible to anyone else
o Includes add/delete/move operations

Subversion makes sure your local working copy is

up to date first
o Can’t commit until you have latest version incorporated

Issue commit command
svn commit
o Can specify files to commit, if desired
o By default, commit operation is recursive

Commit Logs

Subversion will prompt you for a commit log
message
o Describes changes you made in that particular commit

Always give a descriptive commit message, even for
small changes!

o Other people need to know what you have done

o You may need to be reminded, too

Subversion client will start an editor for you

o Can specify which editor to use with the SVN_EDITOR
(or EDITOR) environment variable

o For short messages, use the -m command-line option to
specify the commit message

Discarding Changes

Use svn revert to discard local changes

o Subversion keeps a local copy of original files, so
operation doesn’t require actual repository access

o Can'’t actually revert every local change (e.g. can't
restore deleted directories)

Another option:

o Simply delete working copy and fetch a new one

a0 Does require repository access, so a little slower
than using svn revert

Repository Code

Always compile and test your code before

checking it in

o Your mistakes will affect other people badly.

o Repository version of code should always
compile, and ideally, work well too.

Keep your working copy updated with latest
version of repository code

o Avoids big headaches from getting out of sync
with other development progress

Subversion Documentation

Subversion website:
o http://subversion.tigris.org

The Subversion Book (very useful!)

o http://svnbook.red-bean.com

o Subversion v1.6 available on CS cluster — use
version of Subversion Book for that version

Don’t forget svn help too!

This Week’s Assignment

Lay out your project in a cleaner directory structure

Create an Ant build script for your Boggle program

o Create tasks for:
Cleaning up all build artifacts
Compiling your source code
Compiling your tests
Running your tests
Generating Javadoc documentation

Check your source code (and build script) into a
Subversion repository

No coding for this week! ©

