
CS11 – Advanced Java

Winter 2011-2012
Lecture 4

Today’s Topics

n  No real programming topics today!
n  Project management tools:

q  Automating the build process
q  Source-code management tools

n  This week’s focus:
q  Get your project into better structural shape
q  Automate your project’s build process
q  Get your sources into a version-control system

The Build Process

n  We have multiple steps for our project now:
q  Compile our code, and our unit-test code
q  Run javadoc to generate API documentation
q  Run unit-tests and check the results

n  This is a lot of work!
q  Automate this process to make it faster and easier

n  Current structure is also pretty messy!
q  Program code and test code are in same directory
q  Libraries and generated .class files in there too!

Apache Ant

n  Ant is a platform-independent build tool
q  Written entirely in Java
q  Takes a build.xml file describing build process
q  Pluggable architecture with many build tasks

n  Compile Java sources
n  Run javadoc
n  Run JUnit or TestNG test suites and generate a report
n  Perform code-generation steps (e.g. for J2EE projects)
n  Move/copy/delete files, create/remove directories
n  Send e-mails or other notifications
n  Interact with source-code repositories

Example build.xml File
<project name="myproject" default="compile" basedir=".">

 <!-- Global properties used in build -->
 <property name="srcDir" location="src" />
 <property name="buildDir" location="build"/>
 <property name="buildClassesDir"
 location="${buildDir}/classes"/>

 <target name="-init"> <!-- Initialization target -->
 <tstamp/>
 <mkdir dir="${buildDir}" />
 </target>

 <target name="compile" depends="-init"
 description="Build the project sources.">
 <mkdir dir="${buildClassesDir}" />
 <javac destdir="${buildClassesDir}">
 <src path="${srcDir}" />
 </javac>
 </target>
</project>

Use Ant properties to
specify config values
in one place.

Targets can specify
their dependencies.
They specify a series
of tasks to complete.

Running Ant

n  Ant executable is called ant
n  Just type ant by itself to build default target

q  build.xml specifies the default build target
n  Specify target(s) to run at command-line

ant clean test doc

n  Can also specify other options
q  Verbose output: -v or -verbose
q  Set Java properties: -DpropName=value
q  Many more!

Ant Properties

n  Properties are simple name-value pairs
q  Both name and value are strings
q  Can be specified at top of project file
q  Can be specified inside a build task
q  Use property’s value by wrapping it in ${propName}

n  Example:
<property name="buildDir" value="build" />
<property name="codegenDir" value="${buildDir}/codegen" />

n  Properties can be set once!
q  If specified again elsewhere, it is silently ignored
q  (run ant –verbose to see details of when properties are

set, and when they are “set” multiple times…)

Ant Properties (2)

n  A nifty example:
<target name="debug" description="Set up for debug build">
 <property name="java.debug" value="on" />
 <property name="java.opt" value="off" />
</target>

<target name="release" description="Set up release build">
 <property name="java.debug" value="off" />
 <property name="java.opt" value="on" />
</target>

<target name="compile" depends="debug">
 <javac debug="${java.debug}" optimize="${java.opt}" ... />
</target>

q  By default, compilation will use debug settings.
q  To override at command-line, do this:

ant release compile

Ant Build Targets

n  <target> tags specify the build targets
q  Each target has a name:

<target name="compile">

q  Targets can also be given descriptions
<target name="compile"
 description="Compile the sources!">

q  Names starting with a hyphen cannot be specified
on command-line (“internal use only” tasks)

<target name="-init">

Target Dependencies

n  Targets can also have dependencies
q  Ant performs dependency analysis at build time
q  Executes all required tasks, in the proper order

<target name="–init" />
<target name="clean" depends="–init" />
<target name="compile" depends="–init" />
<target name="test" depends="compile" />

q  You run ant test
q  Ant executes –init, compile, and test targets

in that order

Project Help!

n  Don’t know what targets are available?
ant –projecthelp

q  Lists all build targets that have descriptions
q  Also prints out any description you specify

at top of build.xml file
n  Example:

<project name="paint" default="compile" basedir=".">
 <description>
 A simple program for drawing images.
 </description>
 ...
</project>

Project Directory Structure

n  So far, everything has been in one directory
q  Project sources, test sources, .class files, …

n  A much better approach: Use different directories
q  Source code stays in its own directory structure
q  Generated files (.class files, etc.) go somewhere else!
q  Protects sources from overwriting during build process
q  Makes build cleanup easy: Just blow away the build dir!

n  Similarly, separate test sources from project sources
q  Shouldn’t be part of final package, so keep them separate

n  Any other resources, docs, images, etc. also go in
their own directories

Example Project Structure

n  src Project sources
n  lib Libraries that your project requires
n  test Test source-code
n  res Resources: images, grammars, config, …
n  doc Design documents, manual (not javadocs)
n  build Generated results go here

q  codegen Generated Java sources (if any)
q  classes .class files generated by javac
q  javadoc Generated API documentation
q  tests Compiled test classes from javac
q  results Output logs from running test suite
q  Generated jar file(s) can stay in build directory

Ant and Project Structure

n  Using our Ant properties, specify relevant directories at top of
build.xml file

<property name="srcDir" location="src" />
<property name="buildDir" location="build"/>
<property name="buildClassesDir"
 location="${buildDir}/classes"/>

q  Use earlier Ant properties to specify subdirectory paths

n  In Ant targets, refer to relevant directories using properties
<target name="compile" depends="debug">
 <mkdir dir="${buildClassesDir}" />
 <javac destdir="${buildClassesDir}"
 classpathref="libs.path">
 <src path="${srcDir}" />
 </javac>
</target>

Common Concepts and Types

n  Ant has several concepts that most tasks use
n  FileSet: a group of files within a directory

q  Specified with <fileset> element
n  Base-directory of FileSet typically specified with dir attribute

q  Very sophisticated path-matching capabilities
n  Include or exclude files that match specific patterns

n  A very simple example:
q  A file-set of all test sources, except those in the

subpackage foo, where the sources aren’t ready yet:
<fileset dir="${testSrcDir}">
 <include name="**/Test*.java" />
 <exclude name="**/foo/**" />
</fileset>

q  Many Ant tasks can function as a FileSet as well

** wildcard matches
zero or more directory
levels

Common Concepts and Types (2)

n  Path-Like Structures:
q  A mechanism for constructing sophisticated classpaths and

other sets of paths
q  Frequently used on tasks that compile or run Java code

n  Example: classpaths
<classpath>
 <pathelement location="${libDir}/foo.jar" />
 <pathelement location="${buildClassesDir}" />
</classpath>

q  Can also contain FileSets:
<classpath>
 <fileset dir="${libDir}" includes="*.jar" />
</classpath>

Common Concepts and Types (3)

n  Can also create path-references
q  For defining several paths that refer to each other

n  Example:
q  One path for running the project itself, and a separate path

for running the project’s tests
<path id="libs.path">
 <fileset dir="${libDir}" includes="*.jar" />
 ...
</path>

<path id="test.path">
 <path refid="libs.path" />
 ...
</path>

q  Tasks refer to these with attributes like:
<javac classpathref="test.path" ... >

Ant Summary

n  Ant is used extensively for many Java projects!
n  Many powerful techniques

q  Conditional compilation based on the current OS
q  Ant tasks that are implemented in a scripting language
q  Configuration loaded from properties files
q  Update build numbers and substitute values into code
q  Perform version-control tasks
q  Update website details
q  Perform SSH/FTP tasks
q  …

n  http://ant.apache.org

Source Code Management

n  You are working on a large software project…
n  Problem 1: You break the code

q  Need to roll back to a previous version that works

n  Problem 2: Other people also working on project
q  …perhaps on the exact same source files

n  Problem 3: Centralized source of project info?
q  Maybe a website that shows current test pass-rate, most

recent API docs, etc.
n  A source code management system can solve all of

these problems, and many more

Managing the Source Code

n  Basic idea:
q  Store all project files in a repository
q  Repository keeps track of all changes to any file
q  Copies of the project are “checked out” from the

repository
q  Developers are isolated from others’ changes
q  Changes to project files are “checked in” or

“committed” back to the repository, when ready.
q  Multiple changes to the same file are merged

n  Automatically, if possible; otherwise, manually!

Distributed Version Control

n  A new trend in version control systems:
q  Don’t use a central repository server!

n  Distributed version control systems
q  Each user has a local repository
q  Users work against their own local repository

n  Check out a working copy, make edits, then check in
q  Users can synchronize with other repositories very easily

n  Great for widely distributed software development
q  Open-source software, for example

n  Used less often in commercial development teams
q  Software companies prefer to have a single central server
q  Can still use DVCS in a centralized manner, though

Version Control Systems

n  Commercial centralized version control systems:
q  Perforce, Visual SourceSafe, BitKeeper, …

n  Open-source centralized version control systems:
q  Subversion – written as a replacement for CVS

n  Open-source distributed version control systems:
q  Git – written by Linus Torvalds

n  Used for Linux kernel development, Eclipse, PostgreSQL, …
q  Mercurial (hg) – distributed VCS written in Python

n  Used by Python project, vim, OpenOffice, GNU Octave, …
q  Bazaar – also written in Python

n  Used by Ubuntu project, GNU Emacs, MySQL, …

Using Subversion

n  Two main commands in Subversion:
q  svn

n  Program used by developers to access the repository
n  Can check out files, check in, move, delete, etc.

q  svnadmin
n  The repository administration tool
n  Used rarely, by repository administrator

n  Both programs take commands
q  Example: svn checkout ...
q  Both have a help command:

n  svn help or svn help command

Setting Up a Repository

n  Start by creating a repository
q  Repository contains all the config and data files
q  Command:
svnadmin create /path/to/repository

q  Can be an absolute or relative path
n  Can create your repository on the CS cluster

svnadmin create ~/cs11/advjava/svnrepo

n  Subversion can use different storage layers
q  Filesystem storage, or BerkeleyDB
q  Default is filesystem – use that!

Accessing the Repository

n  Subversion uses URLs to refer to repositories
q  Supports access via HTTP, if needed

n  For local access, use a file:// URL
q  On CS cluster:

file:///home/user/cs11/advjava/svnrepo
n  Subversion also supports remote access

q  svn://… URL for use of Subversion’s server
q  Or, svn+ssh://… URL for accessing over SSH

n  For accessing CS cluster repository remotely:
svn+ssh://user@login.cs.caltech.edu/home/user/cs11/advjava/svnrepo

Importing Source Code

n  Need to import initial project source into repository
q  svn import does this
q  Recursively adds a whole directory tree to repository

n  Lay out your repository in a reasonable way
q  Each project (or subproject) should have its own directory
q  Create subdirectories based on good project structure

n  For Boggle project:
n  boggle/src
n  boggle/test
n  etc. (not boggle/build !)

n  Subversion lets you move files/directories later, too
q  Just in case you make a mistake…

Importing Source Code (2)

n  Go to directory with your source files
q  Clean up *.class files, *~, etc.
q  Don’t want to import those!

n  Import the directory tree into the repository
q  Usually want to specify a subproject to use

svn import file:///home/user/cs11/advjava/svnrepo \
boggle

q  Subversion will add all files in the local directory
(and subdirectories!) into a boggle subdirectory
of your repository

Working On Your Project

n  Now, repository is the central store of all
versions of all files
q  Can check out any version of any file
q  Usually want the most recent version to work with

n  Retrieve a working copy of your project
q  A local copy of a particular version of the files
q  You can make changes in isolation
q  Can periodically sync up with other changes that

have occurred
q  Once your local copy works properly, check it in!

Checking Out Files

n  To check out files:
q  svn checkout url
q  URL specifies both repository location, and directory within

repository
n  Example: to get Boggle project from repository:

svn checkout \
file:///home/user/cs11/advjava/svnrepo/boggle

q  Will create a local directory named boggle, with project
files in it

n  To update local working copy:
svn update

q  If performed within working copy, no URL needed!

Working with Local Files

n  Can add new files using add command
q  From within working copy:
svn add path1 path2 ...

q  Can add whole directories
n  Subversion will recurse through directory’s contents

n  Can delete files using delete command
q  Again, within working copy:
svn delete path1 path2 ...

n  Can move files using move command
svn move frompath topath

Committing Changes

n  Changes to working copy must be committed before
they are visible to anyone else
q  Includes add/delete/move operations

n  Subversion makes sure your local working copy is
up to date first
q  Can’t commit until you have latest version incorporated

n  Issue commit command
svn commit

q  Can specify files to commit, if desired
q  By default, commit operation is recursive

Commit Logs

n  Subversion will prompt you for a commit log
message
q  Describes changes you made in that particular commit

n  Always give a descriptive commit message, even for
small changes!
q  Other people need to know what you have done
q  You may need to be reminded, too

n  Subversion client will start an editor for you
q  Can specify which editor to use with the SVN_EDITOR

(or EDITOR) environment variable
q  For short messages, use the -m command-line option to

specify the commit message

Discarding Changes

n  Use svn revert to discard local changes
q  Subversion keeps a local copy of original files, so

operation doesn’t require actual repository access
q  Can’t actually revert every local change (e.g. can’t

restore deleted directories)
n  Another option:

q  Simply delete working copy and fetch a new one
q  Does require repository access, so a little slower

than using svn revert

Repository Code

n  Always compile and test your code before
checking it in
q  Your mistakes will affect other people badly.
q  Repository version of code should always

compile, and ideally, work well too.
n  Keep your working copy updated with latest

version of repository code
q  Avoids big headaches from getting out of sync

with other development progress

Subversion Documentation

n  Subversion website:
q  http://subversion.tigris.org

n  The Subversion Book (very useful!)
q  http://svnbook.red-bean.com
q  Subversion v1.6 available on CS cluster – use

version of Subversion Book for that version

n  Don’t forget svn help too!

This Week’s Assignment

n  Lay out your project in a cleaner directory structure
n  Create an Ant build script for your Boggle program

q  Create tasks for:
n  Cleaning up all build artifacts
n  Compiling your source code
n  Compiling your tests
n  Running your tests
n  Generating Javadoc documentation

n  Check your source code (and build script) into a
Subversion repository

n  No coding for this week! J

