
CS11 – Advanced Java

Winter 2011-2012
Lecture 3

Java Constants

n  Frequently need to define constants in Java code
public class BoggleBoard {
 /** Default size for a Boggle board. */
 public static final int DEFAULT_SIZE = 4;
 ...
}

n  Standard conventions for Java constants:
q  Name usually follows ALL_CAPS naming convention
q  Declare public static final
q  (or, use private / protected if appropriate)

The static Keyword

n  Members of a class can be declared static
q  They are associated with the class, not a particular object
q  For static fields, there is only one copy of the value

n  Example:
public class CommandPrompt {
 public static final String PROMPT =
 "Type command: ";
 ...
}

q  PROMPT is an object, but it isn’t associated with individual
CommandPrompt instances

q  Only one value, and all code can share that single value
q  Much more efficient memory usage than an instance field,

when other code can share a single value

Static Initialization

n  When are static fields initialized?
public class CommandPrompt {
 public static final String PROMPT =
 "Type command: ";
 ...
}

n  The VM initializes a class the first time the type is
actually used by other code.
q  Class definition is found via the classpath, and then verified

n  e.g. all instructions are valid; jump instructions go to valid
addresses; etc.

q  Any references to other types may be verified and resolved
n  (may involve the loading of additional classes, of course)

q  Finally, static fields in the class are initialized

Static Initialization (2)

n  Static fields are initialized at the end of the class-
load process

n  Sometimes, can’t initialize a static field with a single
line of code

public class NoiseGenerator {
 public static final Vector3f[] noiseVectors =
 new Vector3f[1024];
 ...
}

q  Also need to initialize the noise-vector elements to random
unit-vectors

q  Clearly can’t do it in a single line!
n  How to implement this static initialization?

Static Initialization (3)

n  Classes can specify static initializers:
public class NoiseGenerator {
 public static final Vector3f[] noiseVectors =
 new Vector3f[1024];

 static {
 for (int i = 0; i < noiseVectors.length; i++) {
 noiseVectors[i] = new Vector3f();
 ... // Initialize the vector
 }
 }
 ...
}

q  Static initializers cannot throw checked exceptions!
q  Initialization of static fields, and execution of static initializers,

occurs in order of appearance in the source file
q  Static initialization is also specified to be thread-safe in Java

The final Keyword

n  Java variables can be declared as final
q  The variable can only be assigned to once.

n  Frequently used for constant class and instance fields
public class CommandPrompt {
 public static final String PROMPT =
 "Type command: ";
 ...
}

q  PROMPT can only be written to once, and then it is fixed
n  final fields are usually assigned where they are declared, but

this is not strictly required by Java!
q  final instance fields must be assigned to, by the end of every

constructor
q  final class fields must be assigned to, by some static initializer

The final Keyword (2)

n  final sometimes uses on local variables or method-arguments
q  Prevents reassignment to variables that shouldn’t change
q  Used to reduce correctness issues
q  Technique does have some limited usefulness… J

n  Example:
int findWord(String w, final ArrayList<String> words) {
 int i = 0;
 for (String s : words) {
 if (s.equals(w)) return i;
 i++;
 }
 return -1;
}

n  What can’t we do with words?
q  We can’t set words to refer to something else
q  Increases the correctness of our own method (slightly)

The final Keyword (3)

n  Example:
int findWord(String w, final ArrayList<String> words) {
 int i = 0;
 for (String s : words) {
 if (s.equals(w)) return i;
 i++;
 }
 return -1;
}

n  What can we do with words?
q  We can call any of the methods on words…
q  We can call mutators on words!

n  words.add("yo' mama!");
n  words.clear();

n  final only prohibits reassignment to the variable
n  Declaring words as final doesn’t really get us much…

final and const

n  Java final keyword is nothing like C++ const
q  (and Java has no equivalent to C++ const)

n  You will probably run into projects that use final
for method-args and local variables…
q  Just be aware of the significant limitations of this technique

n  If you really need immutable state:
q  Create a class without mutators!

n  (and if necessary, a subclass that provides mutators)
n  Java String, Integer, etc. classes are all immutable

q  Or, see Collections.unmodifiableList(List), etc.
n  Provides an immutable view of another collection
n  Original collection is still mutable, but can pass the immutable

view to other methods to work with

Back to Java Constants…

n  Covered the standard modifiers used for constants
public class BoggleBoard {
 /** Default size for a Boggle board. **/
 public static final int DEFAULT_SIZE = 4;
 ...
}

n  For simple constants, this is the recommended way
q  When constant is an object, improves memory efficiency

n  Two other common ways constants are often used
q  Both are not so good. J

Interfaces and Constants

n  Interfaces can contain two kinds of members
q  Public methods, and constants!

n  Constants are declared as static final, since all interface
members are automatically public

n  When a package uses a lot of constants, commonly
put into a “constant interface”
q  The interface contains only constants, no methods

n  Lots of examples of this in the Java API
q  javax.swing.SwingConstants interface

n  e.g. defines alignment constants LEFT, CENTER, RIGHT
q  Many Swing classes “implement” SwingConstants, so

they can easily use the constants in their implementations
n  No methods need to be added; SwingConstants has none!

Joshua Bloch and Constant Interfaces

n  Interfaces define a type in Java
q  They specify a set of behaviors that implementing objects

provide
n  When a class implements an interface:

q  It should say something about what clients of the class can
do with objects of that type!

q  Other code can refer to an object by its interface types
n  Constant interfaces violate this principle

q  e.g. SwingConstants doesn’t specify any behavior at all!
q  But, we can write strange code like this:

SwingConstants c = new JButton("this is weird");

q  Can’t call any methods on c because it declares none!

A Better Solution: Constant Utility Classes

n  If you have a lot of constants to group
together:
q  Put them into a utility class that can’t be

instantiated
n  Implement a private default constructor

q  Provide the set of public static final fields
n  Moral:

q  Just because the Java API uses certain design
patterns, doesn’t mean that you should. J

Simple Enumerations

n  Constants are also frequently used for enumerations
/** Represents the suits of cards in a card deck. */
public class Card {
 public static final int SPADES = 1;
 public static final int HEARTS = 2;
 public static final int CLUBS = 3;
 public static final int DIAMONDS = 4;
 ...
}

n  Problems?
q  No type-safety:

public class Card {
 ...
 void setSuit(int suit);
}

q  Could accidentally mix different enums, or specify invalid values!

Typesafe Enumerations

n  Implementing enumerations this way is very error-prone
n  A better approach: “typesafe enumerations”

q  Create a specific class for each enumeration
q  Create a unique object for each enum value

public class Suit {
 /** Only Suit can call its own constructor. */
 private Suit() { }

 public static final Suit SPADES = new Suit();
 public static final Suit HEARTS = new Suit();
 public static final Suit CLUBS = new Suit();
 public static final Suit DIAMONDS = new Suit();
}

q  Can add other fields to represent details of each enum value,
such as name, id, etc.

Typesafe Enumerations (2)

n  The “typesafe enumerations” pattern is very useful,
but also needs a lot of infrastructure code
q  Primarily to ensure that each enum-value is actually unique

within the JVM
n  Also, can’t write switch-statements that test objects:

Card c = ... ;
switch (c.getSuit()) {
 case Suit.SPADES:
 ...
}

q  This code won’t compile with the typesafe enum approach!
q  Will compile if suits are represented as integers, but that

approach has bigger issues

Java 1.5 enum Types

n  Java 1.5 introduced support for typesafe enums
q  The pattern is tremendously useful…
q  The implementation can be tricky to get right…
q  And we would also like language support (e.g. switch)

n  Updating our Suit to be an enumeration:
public enum Suit {
 SPADES,
 HEARTS,
 CLUBS,
 DIAMONDS
}

q  Can put Javadoc comments on the enumeration, and on
each value

Java 1.5 enum Types (2)

n  Can write switch statements against enum values:
Card c = ... ;
switch (c.getSuit()) {
 case SPADES:
 ...
}

n  Java enums also provide support for toString() and other
Object methods automatically

System.out.println(c.getSuit());
à SPADES

n  Enums also have a values array-member, containing all
specified enum-values

for (int val = 1; val <= 13; val++)
 for (Suit s : Suit.values)
 deck.add(new Card(val, s));

Extending Enumerations

n  Java enum types are implemented as classes
q  Can add fields and methods to your enum types

n  Example:
public enum ChessPiece {
 KING (200), // Arbitrary value for king
 QUEEN (9),
 ROOK (5),
 BISHOP(3),
 KNIGHT(3),
 PAWN (1); // Note the semicolon!

 private final int value; // Point-value of piece

 ChessPiece(int value) { this.value = value; }

 public int value() { return value; }
}

Nesting Enumerations

n  Can also put enum declarations within other classes
public class Card {
 public enum Suit {
 SPADES, HEARTS, CLUBS, DIAMONDS
 }

 public Card(int value, Suit suit) {
 ...
 }
}

q  Card can refer to enum values as Suit.SPADES, etc.
q  External code must specify Card.Suit.SPADES, etc.

This Week’s Lab

n  Begin building the UI for Boggle game
q  Start with classes to display a Boggle board, and

to let users enter words they find
n  Give the user some visual cues

q  Use a font that is large enough to read easily
q  Update button “enabled” status and border-color

to indicate what letters are available to select next
n  UI code also needs to provide a method to

return the currently selected word

Example User Interface

n  A grid of buttons displays the
current Boggle board

n  Button borders indicate what
letters can be chosen

n  When user selects a letter,
it shows a red border

n  Only the letters adjacent to
last selection are available

Example User Interface (2)

n  As letters are selected,
word is shown in red
q  The word itself is the

concatenation of each
button’s text-value

n  “Available letters” are always based on last
selected letter
q  Exclude already-selected letters!

General Approach

n  Don’t reinvent the wheel!
n  Swing already provides

buttons and panels
q  Let’s just customize their

behavior!
n  Create a subclass of JButton that handles Boggle-

specific details of displaying a cell
q  Manage button-state, appearance, cell value, etc.

n  Create a subclass of JPanel that displays an entire
BoggleBoard
q  Methods to set the board to use, and to get current word
q  Handles action-events from buttons and updates their

appearance

Swing Component Appearance

n  All Swing components derive from
javax.swing.JComponent
q  Provides common functionality across all components
q  Custom components that paint their own contents are also

derived from JComponent
n  Many ways to change a JComponent’s appearance

q  Set a tooltip, add one or more borders, change foreground /
background colors, change the cursor, change the font, etc.

n  Can also enable/disable components
q  Disabled components do not receive user input
q  Indicated in UI by graying out the component
q  Use setEnabled(boolean) and isEnabled()

Swing Component Naming

n  Another naming convention
for Swing components

n  All Swing components derive
from JComponent
q  The Swing analogue to

Java AWT’s Component type
n  All Swing component names start with a “J”
n  Unless it really doesn’t make sense for your

code, you should also follow this convention
q  e.g. JBoggleButton, JBoggleBoard

Swing Components and Fonts

n  Can change the font on Swing components
q  setFont(Font) and getFont() methods

n  The java.awt.Font class represents fonts in Java
n  Java fonts fall into two categories:

q  Physical fonts correspond to actual fonts installed on your
computer (e.g. Arial or Helvetica)

q  Logical fonts are “generic” fonts that all Java VMs must
provide
n  Typically provided by mapping each logical font-name to a

physical font, based on what OS provides by default
n  Serif, SansSerif, Monospaced, Dialog, and DialogInput

Swing Components and Fonts (2)

n  Easiest way to get fonts is via Font constructor
q  Font(String name, int style, int size)
q  Font has constants for all logical font names, and all styles

// Get a bold, 20-point font without serifs
Font f = new Font(Font.SANS_SERIF, Font.BOLD, 20);

q  Can also specify other font names, but no guarantee they
will be available!

// Get an italicized, 12-point Times New Roman font
f = new Font("Times New Roman", Font.ITALIC, 12);

q  If a font name is unrecognized then Java will switch to the
“Dialog” logical font

q  Suggestion: only use logical font names with constructor

Swing Components and Fonts (3)

n  To get all fonts on a particular system, use:
Font[] java.awt.GraphicsEnvironment.getAllFonts()

n  Returns an array of Font objects that includes all
available fonts

n  Returned fonts are only 1-point in size
n  Looks like this: this text is 1-point (the dot is “this text is 1-point”)
n  Application must derive fonts from these “base fonts”

n  To make your application most portable, use
this mechanism to find system fonts
q  Or, just stick with the logical fonts

Swing Components and Borders

n  Swing components can be given a border
q  Effectively shrinks the Swing component itself

n  Set and get a component’s
border via setBorder(Border)
and getBorder() methods

n  Border is an interface defined
in javax.swing.border package
q  See Java APIs for implementations!

n  Two ways to get simple borders:
q  Create it yourself:

Border b = new LineBorder(Color.RED, 3);
q  Use the javax.swing.BorderFactory class

Border b = BorderFactory.createLineBorder(Color.RED, 3);

Button! Swing button

Border around the button

References

n  Effective Java by Joshua Bloch
q  Item 17: Use interfaces only to define types
q  Item 21: Replace enum constructs with classes

