CS11 — Advanced Java

Winter 2011-2012
Lecture 3

Java Constants

Frequently need to define constants in Java code

public class BoggleBoard {
/** Default size for a Boggle board. */
public static final int DEFAULT SIZE = 4;

}
Standard conventions for Java constants:
o Name usually follows ALL CAPS naming convention
o Declare public static final
o (or, use private / protected if appropriate)

The static Keyword

Members of a class can be declared static
o They are associated with the class, not a particular object

o For static fields, there is only one copy of the value

Example:
public class CommandPrompt {
public static final String PROMPT =

"

"Type command: ;

}
o PROMPT is an object, but it isn’'t associated with individual

CommandPrompt instances
o Only one value, and all code can share that single value

o Much more efficient memory usage than an instance field,
when other code can share a single value

Static Initialization

When are static fields initialized?

public class CommandPrompt {
public static final String PROMPT =
"Type command: ";

}
The VM initializes a class the first time the type is
actually used by other code.

o Class definition is found via the classpath, and then verified

e.g. all instructions are valid; jump instructions go to valid
addresses; efc.

o Any references to other types may be verified and resolved
(may involve the loading of additional classes, of course)
o Finally, static fields in the class are initialized

Static Initialization (2)

Static fields are initialized at the end of the class-
load process

Sometimes, can't initialize a static field with a single
line of code

public class NoiseGenerator {
public static final Vector3f[] noiseVectors =
new Vector3£f[1024];

}

o Also need to initialize the noise-vector elements to random
unit-vectors

o Clearly can’'t do it in a single line!
How to implement this static initialization?

Static Initialization (3)

Classes can specify static initializers:

public class NoiseGenerator ({
public static final Vector3f[] noiseVectors =
new Vector3£f[1024];

static {

for (int i = 0; i < noiseVectors.length; i++) ({

noiseVectors[i] = new Vector3f ()
// Initialize the vector

}
o Static initializers cannot throw checked exceptions!

o Initialization of static fields, and execution of static initializers,
occurs in order of appearance in the source file

o Static initialization is also specified to be thread-safe in Java

The £inal Keyword

Java variables can be declared as final
o The variable can only be assigned to once.

Frequently used for constant class and instance fields

public class CommandPrompt ({
public static final String PROMPT =
"Type command: ";

}
o PROMPT can only be written to once, and then it is fixed

final fields are usually assigned where they are declared, but
this is not strictly required by Java!

o final instance fields must be assigned to, by the end of every
constructor

o final class fields must be assigned to, by some static initializer

The £inal Keyword (2)

final sometimes uses on local variables or method-arguments
o Prevents reassignment to variables that shouldn’t change

o Used to reduce correctness issues

o Technique does have some limited usefulness... ©

Example:
int findWord(String w, final ArrayList<String> words) {
int 1 = 0;

for (String s : words) {
if (s.equals(w)) return i;
i++;

}

return -1;

}
What can’t we do with words?

o We can’t set words to refer to something else
o Increases the correctness of our own method (slightly)

The £inal Keyword (3)

Example:
int findWord(String w, final ArrayList<String> words) {
int 1 = 0;

for (String s : words) {
if (s.equals(w)) return i;
i++;

}

return -1;

}
What can we do with words?

o We can call any of the methods on words...

o We can call mutators on words!
words.add("yo' mama!") ;
words.clear () ;

final only prohibits reassignment to the variable
Declaring words as final doesn't really get us much...

final and const

Java f£inal keyword is nothing like C++ const
o (and Java has no equivalent to C++ const)

You will probably run into projects that use £inal
for method-args and local variables..

o Just be aware of the significant Ilmltatlons of this technique

If you really need immutable state:

o Create a class without mutators!
(and if necessary, a subclass that provides mutators)
Java String, Integer, efc. classes are all immutable

o Or, see Collections.unmodifiablelList (List), efc.
Provides an immutable view of another collection

Original collection is still mutable, but can pass the immutable
view to other methods to work with

Back to Java Constants...

Covered the standard modifiers used for constants

public class BoggleBoard {
/** Default size for a Boggle board. **/

public static final int DEFAULT SIZE = 4;

}
For simple constants, this is the recommended way

o When constant is an object, improves memory efficiency

Two other common ways constants are often used
o Both are not so good. ©

Interfaces and Constants

Interfaces can contain two kinds of members

o Public methods, and constants!

Constants are declared as static final, since all interface
members are automatically public

When a package uses a lot of constants, commonly
put into a “constant interface”

o The interface contains only constants, no methods

Lots of examples of this in the Java API
0 javax.swing.SwingConstants interface
e.g. defines alignment constants LEFT, CENTER, RIGHT

o Many Swing classes “implement” SwingConstants, SO
they can easily use the constants in their implementations

No methods need to be added; SwingConstants has none!

Joshua Bloch and Constant Interfaces

Interfaces define a type in Java

o They specify a set of behaviors that implementing objects
provide

When a class implements an interface:

o It should say something about what clients of the class can
do with objects of that type!

o Other code can refer to an object by its interface types

Constant interfaces violate this principle
0 e.g. SwingConstants doesn’t specify any behavior at all!

o But, we can write strange code like this:
SwingConstants ¢ = new JButton("this is weird");

o Can't call any methods on ¢ because it declares none!

A Better Solution: Constant Utility Classes

If you have a lot of constants to group
together:

o Put them into a utility class that can’t be
instantiated
Implement a private default constructor

o Provide the set of public static final fields

Moral:

o Just because the Java API uses certain design
patterns, doesn’'t mean that you should. ©

Simple Enumerations

Constants are also frequently used for enumerations
/** Represents the suits of cards in a card deck. */
public class Card {
public static final int SPADES =
public static final int HEARTS
public static final int CLUBS
public static final int DIAMONDS =

i
B W

N

}
Problems?

o No type-safety:
public class Card {

void setSuit(int suit);
}
o Could accidentally mix different enums, or specify invalid values!

Typesate Enumerations

Implementing enumerations this way is very error-prone
A better approach: “typesafe enumerations”
o Create a specific class for each enumeration

o Create a unique object for each enum value

public class Suit ({
/** Only Suit can call its own constructor. */
private Suit() { }

public static final Suit SPADES new Suit();
public static final Suit HEARTS = new Suit();
public static final Suit CLUBS = new Suit();
public static final Suit DIAMONDS

new Suit();

}
o Can add other fields to represent details of each enum value,
such as name, id, etc.

Typesate Enumerations (2)

The “typesafe enumerations” pattern is very useful,

but also needs a lot of infrastructure code

o Primarily to ensure that each enum-value is actually unique
within the JVM

Also, can’t write switch-statements that test objects:

Card c = ... ;
switch (c.getSuit()) {
case Suit.SPADES:

}
o This code won’t compile with the typesafe enum approach!

o Will compile if suits are represented as integers, but that
approach has bigger issues

Java 1.5 enum Types

Java 1.5 introduced support for typesafe enums
o The pattern is tremendously useful...

o The implementation can be tricky to get right...

o And we would also like language support (e.g. switch)

Updating our Suit to be an enumeration:
public enum Suit ({
SPADES,
HEARTS,
CLUBS,
DIAMONDS

}

o Can put Javadoc comments on the enumeration, and on
each value

Java 1.5 enum Types (2)

Can write switch statements against enum values:
Card c = ... ;
switch (c.getSuit()) {
case SPADES:

}

Java enums also provide support for toString () and other
Object methods automatically

System.out.println(c.getSuit())
- SPADES
Enums also have a values array-member, containing all
specified enum-values
for (int val = 1; val <= 13; val++)
for (Suit s : Suit.values)
deck.add (new Card(val, s));

Extending Enumerations

Java enum types are implemented as classes
o Can add fields and methods to your enum types

Example:
public enum ChessPiece {

KING (200), // Arbitrary value for king
QUEEN (9),

ROOK (5),

BISHOP(3),

KNIGHT (3),

PAWN (1) // Note the semicolon!

private final int value; // Point-value of piece
ChessPiece (int value) { this.value = wvalue; }

public int wvalue() { return wvalue; }

Nesting Enumerations

Can also put enum declarations within other classes

public class Card ({
public enum Suit {
SPADES, HEARTS, CLUBS, DIAMONDS

public Card(int value, Suit suit) {

}

}
o Card can refer to enum values as Suit.SPADES, etc.

o External code must specify Card.Suit.SPADES, etc.

This Week’s Lab

Begin building the Ul for Boggle game

o Start with classes to display a Boggle board, and
to let users enter words they find

Give the user some visual cues
o Use a font that is large enough to read easily

o Update button “enabled” status and border-color
to indicate what letters are available to select next

Ul code also needs to provide a method to
return the currently selected word

Example User Interface

A grid of buttons displays the
current Boggle board

Button borders indicate what
letters can be chosen

When user selects a letter,
It shows a red border

Only the letters adjacent to
last selection are available

Example User Interface (2)

As letters are selected,
word is shown in red

o The word itself is the
concatenation of each
button’s text-value

“Avalilable letters” are always based on last
selected letter

o Exclude already-selected letters!

General Approach

Don’t reinvent the wheel!

Swing already provides
buttons and panels

o Let's just customize their
behavior!

Create a subclass of JButton that handles Boggle-
specific details of displaying a cell
o Manage button-state, appearance, cell value, etc.

Create a subclass of JPanel that displays an entire
BoggleBoard
o Methods to set the board to use, and to get current word

o Handles action-events from buttons and updates their
appearance

Swing Component Appearance

All Swing components derive from
javax.swing.JComponent
o Provides common functionality across all components

o Custom components that paint their own contents are also
derived from JComponent

Many ways to change a JComponent’s appearance

o Set a tooltip, add one or more borders, change foreground /
background colors, change the cursor, change the font, etc.

Can also enable/disable components

o Disabled components do not receive user input

o Indicated in Ul by graying out the component

0 Use setEnabled (boolean) and isEnabled ()

Swing Component Naming

Another naming convention
for Swing components

All Swing components derive
from JComponent

o The Swing analogue to
Java AWT's Component type

All Swing component names start with a “J”

Unless it really doesn’'t make sense for your
code, you should also follow this convention

0 e.g. JBoggleButton, JBoggleBoard

Swing Components and Fonts

Can change the font on Swing components
0 setFont (Font) and getFont () methods

The java.awt.Font class represents fonts in Java

Java fonts fall into two categories:

o Physical fonts correspond to actual fonts installed on your
computer (e.g. Arial or Helvetica)

o Logical fonts are “generic” fonts that all Java VMs must
provide

Typically provided by mapping each logical font-name to a
physical font, based on what OS provides by default

Serif, SansSerif, Monospaced, Dialog, and Dialoginput

Swing Components and Fonts (2)

Easiest way to get fonts is via Font constructor
0 Font(String name, int style, int size)
o Font has constants for all logical font names, and all styles

// Get a bold, 20-point font without serifs
Font £ = new Font (Font.SANS SERIF, Font.BOLD, 20);

o Can also specify other font names, but no guarantee they
will be available!
// Get an italicized, 1l2-point Times New Roman font
f = new Font("Times New Roman", Font.ITALIC, 12);
o If a font name is unrecognized then Java will switch to the
“Dialog” logical font

o Suggestion: only use logical font names with constructor

Swing Components and Fonts (3)

To get all fonts on a particular system, use:

Font[] java.awt.GraphicsEnvironment.getAllFonts()

Returns an array of Font objects that includes all
available fonts

Returned fonts are only 1-point in size
Looks like this: (the dot is “this text is 1-point”)
Application must derive fonts from these “base fonts”

To make your application most portable, use
this mechanism to find system fonts
o Or, just stick with the logical fonts

Swing Components and Borders

Swing components can be given a border
o Effectively shrinks the Swing component itself

Set and get a component’s _ — T Rutton!
border via setBorder (Border) Swing button

and getBorder () methods /\/
Border is an interface defined Border around the button

IN javax.swing.border package
o See Java APls for implementations!

Two ways to get simple borders:

o Create it yourself:
Border b = new LineBorder (Color.RED, 3);

o Use the javax.swing.BorderFactory class
Border b = BorderFactory.createlLineBorder (Color.RED, 3);

Reterences

Effective Java by Joshua Bloch
o Iltem 17: Use interfaces only to define types
o Item 21: Replace enum constructs with classes

