
CS11 – Advanced Java

Winter 2011-2012
Lecture 2

Today’s Topics

n  Assertions
n  Java 1.5 Annotations
n  Classpaths
n  Unit Testing!
n  Lab 2 hints J

Assertions!

n  Assertions are a very useful language feature
n  Provide two major benefits
n  Can test the assumptions that your code makes

q  Add statements to your code that test your assumptions
q  These assertions are tested at runtime
q  If assertion is violated then program is halted with an error

n  Assertions also document your assumptions
q  Like javadoc, the code specifies its own assumptions
q  Other developers can read your code and see exactly what

you think should be true

Assertions in Java

n  Java 1.4 added an assert keyword
assert result >= 0;

q  Condition must evaluate to a boolean value
q  No parentheses required around the condition

n  If the condition is false at runtime, a
java.lang.AssertionError is thrown
q  AssertionError is in the Error subtree of the Java

exception hierarchy
n  Since it’s an exception, it includes a stack-trace for where the

assertion-failure occurred
q  From Java API for java.lang.Error:

n  An Error is a subclass of Throwable that indicates
serious problems that a reasonable application should
not try to catch.

Assertions in Java (2)

n  Simple assert syntax:
assert cond;

q  cond must evaluate to a boolean value
n  Can also specify details for when failure occurs:

n  assert cond : expr;
q  expr must evaluate to something

n  e.g. it cannot be a call to a void function
n  expr is only evaluated if cond is false

n  Error details should indicate what went wrong
q  Make it easy to debug your software!
q  Example:

assert result >= 0 : "Bad result " + result;

Disabling Assertions

n  Assertions are sometimes expensive to test
q  Example: a class that can sort its contents

public class Sorter {
 public boolean inOrder() {
 ... // Iterate through contents to test

order
 }

 public void sort() {
 ... // Do the sorting magic here

 assert inOrder() : "My sort is broken!";
 }
}

n  Java can enable/disable assertions at runtime
q  A class’ assertion behavior is enforced when it is loaded
q  Can’t turn on/off a class’ assertions after the class is loaded

Disabling Assertions (2)

n  Java VM uses these arguments for assertions:
q  -enableassertions (or -ea)

n  Enables assertions in all classes except system classes
q  -disableassertions (or -da)

n  Disables assertions in all classes except system classes
n  Example options:

q  -ea package.ClassName or -da package.ClassName
n  Enables/disables assertions in a specific class

q  -ea package... or -da package...
n  Enables/disables assertions in all classes in a package

n  To enable/disable assertions in system classes:
q  -enablesystemassertions or -esa
q  -disablesystemassertions or -dsa

Java Assertion Guidelines

n  Do not use Java assertions for verifying the
arguments of public APIs!

n  Standard Java approach is to use exceptions to flag
invalid arguments

n  A small set of examples from the Java API:
q  NullPointerException

n  null was specified for a required reference-argument
q  IndexOutOfBoundsException

n  an index argument was out of the required range
q  NumberFormatException

n  a string representation of a number is not the correct format
q  IllegalArgumentException

n  a general catch-all for bad arguments

Java Assertion Guidelines (2)

n  Don’t put required code into assertion tests!
assert set.remove(obj) : "obj not found: " + obj;

q  Problem?
n  When this assertion is disabled, the remove operation

won’t occur at all!

n  Many more guidelines for assertions in Java
q  For more info, see “Programming with Assertions”

http://java.sun.com/javase/6/docs/technotes/guides/language/assert.html

Java Naming Conventions

n  A common usage pattern for classes in Java:
q  Create a class for use in a 3rd-party framework
q  Frequently, the class needs to adhere to certain naming

conventions
n  Framework can look up methods and fields on the class
n  External dev tools can parse the code and find methods/fields

n  Example: J2EE web-application frameworks
q  Enterprise JavaBeans (EJBs) encapsulate web-app logic
q  EJBs must implement certain interfaces, and EJB methods

must follow certain naming conventions
q  When these rules are violated, J2EE application server

gets very unhappy.

Java Annotations

n  Java 1.5 introduces a simpler solution:
q  Attach annotations (i.e. metadata) to classes, and their

fields and methods

n  Annotations can be extracted by external tools
q  Instead of looking for methods with a particular name or

signature, retrieve all methods with a specific annotation
n  Annotations are also used by the Java compiler, VM

q  Examples:
n  “this method is deprecated”
n  “this method implements an interface method”
n  “this method overrides a parent-class method”

Java Annotations (2)

n  Annotations are like classes
q  They have a specific type
q  They can contain fields to store annotation details

n  Annotation specifications include:
q  What they can appear on (e.g. only classes, or only

methods)
q  A retention policy: when and where they are made

available
n  “Source” – only available at compile-time
n  “Class” – annotations included in compiled class file, but JVM

may discard them at load-time
n  “Runtime” – annotations must be kept by the JVM at runtime,

so that they can be extracted and read by other code

A Simple Example

n  You need to write a 2D point class
public class Point2d {
 private double xCoord, yCoord;

 public boolean equals(Point2d obj) {
 ... // Implementation of equals
 }
}

n  Problems?
q  This is not a correct declaration of equals()!
q  Must take an argument of type Object

n  The compiler doesn’t tell us there is a problem!
q  Code just acts bizarrely when used with collections, etc.

Now with Annotations

n  Java provides some annotations for you to use
q  @Override – A method overrides a parent-class method

n  Update our code:
public class Point2d {
 private double xCoord, yCoord;

 @Override
 public boolean equals(Point2d obj) {
 ... // Implementation of equals
 }
}

q  Since we didn’t declare equals() properly, it doesn’t
actually override Object.equals()
n  The compiler reports an error, and now you can fix your bug.

More Annotation Details

n  You can create your own annotations too!
q  Create your own Java class-processing tools
q  3rd-party tools and frameworks have their own

annotations to use in your software

n  Java annotation documentation
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html

n  Java Annotation Processing Tool
http://java.sun.com/javase/6/docs/technotes/guides/apt/index.html

Java Classpaths

n  When a Java program refers to a class, the class’
definition has to be available somewhere

import javax.vecmath.Vector3f;
...
Vector3f v = new Vector3f(1.0f, 0.0f, 0.0f);

q  When the code is compiled, javac has to find definition of
javax.vecmath.Vector3f

q  When the code is run, the JVM has to find this definition too
n  The classpath tells Java where to look for class

definitions
q  Default classpath is the current directory “.”
q  (Java system classes aren’t handled via this classpath…)

Specifying the Classpath

n  When you are using external libraries, you need to
specify the classpath
q  javax.vecmath.Vector3f is in Java3D library
q  Not in standard Java API, and not in our local directory!

n  Two ways:
q  Use -classpath (or -cp) argument to javac and java
q  Specify the CLASSPATH environment-variable

n  This value is a path expression
q  File-separators and path-separators depend on the OS!
q  Windows: -cp C:\path\one;C:\path\two
q  Linux/Mac: -cp /path/one:/path/two
q  If path contains spaces, enclose it with double-quotes

Specifying the Classpath (2)

n  The classpath can include:
q  A path to a directory, if the directory contains .class files
q  A path to a specific JAR file

n  JAR files are archives of Java class files; JAR = Java ARchive
n  More on JAR files in a few weeks
n  (See docs and jar utility if you are curious)

n  Classpaths cannot simply refer to the directory
where JAR files reside!
q  Must actually specify the JAR files themselves in the

classpath

Classpath Example

n  If our Vector3f class lives in vecmath.jar
q  If vecmath.jar is in the same directory:

n  javac –cp vecmath.jar MyClass.java
q  If vecmath.jar lived somewhere else:

n  javac –cp /path/to/vecmath.jar MyClass.java
q  Running our code is similar:

n  java –cp /path/to/vecmath.jar MyClass

n  Specifying the classpath eliminates the current
directory from the path
q  May need to do this kind of thing in some circumstances:

n  javac –cp .:/path/to/vecmath.jar MyClass.java
n  java –cp .:/path/to/vecmath.jar MyClass

Testing the Word List

n  Last week you created a word-list class
q  Wrote a very simple test for it
q  A lot of functionality went untested!

n  Would like to create a series of test cases to
exercise our class
q  Each test exercises a single feature of our class
q  If a test fails, should be simple to diagnose and solve

n  Unit testing:
q  Tests for the smallest verifiable units of your program
q  In Java, the smallest testable units are methods on a class

Unit-Testing Goals

n  Ideally, your test suite should exercise all your code
q  Every code-path through your program
q  Tests that verify normal behavior
q  Tests that verify error-handling behavior too!

n  Called “negative tests”
n  Make sure proper exceptions are thrown in error cases
n  Make sure program doesn’t end up in an invalid state
n  Make sure program releases any allocated resources

n  Code-coverage tools measure how much code is
exercised by a test suite
q  Several different measures for code coverage
q  Critical applications often require 100% coverage

Unit-Testing Goals (2)

n  Unit-testing attempts to isolate each class, and
ideally each method
q  Makes identification and resolution of bugs much easier

n  Classes frequently reference other classes…
q  Often hard to test a single class in isolation

n  Unit-testing motivates separation of interface from
implementation
q  Classes interact with each other through well-defined

interfaces
q  Test suite provides a dummy implementation for the class

being tested to use
q  Can also use dummy impl. to simulate various cases

Unit-Testing Limitations

n  Unit-testing is an easy way to improve software
quality
q  No excuse to not employ unit-testing on your software

n  Still only exercises individual units…
q  May be larger-scale design issues, incompatibilities, etc.

n  Integration testing:
q  Individual components and modules are combined and

tested as a group
q  Usually started after unit-testing has made good headway

n  System testing:
q  Entire software system is tested and verified, as a whole
q  Follows after integration testing has made good progress

Regression Testing

n  One other important testing methodology to know
about: regression testing

n  Scenario:
q  You are working on a software project that has a test suite
q  You make some changes to the project…
q  Suddenly there are new failures for tests that used to pass!

n  This is called a regression
q  You broke a feature that used to work (more common)
q  You added code that exposed a hidden bug (less common)

n  Extremely important to prevent regressions!
q  Especially true when fixing bugs on released software
q  Customer wants a bug-fix release that makes their life

better, not worse.

Regression Testing (2)

n  Two main practices for finding and preventing
regressions!

n  First practice:
q  When you add a new feature or fix a bug, run the entire test

suite against your software
q  If your test suite is complete, will quickly identify any

regressions that your changes have caused
n  Second practice:

q  Whenever a new bug is discovered, write a specific test
case to check for that specific bug

n  Good software companies employ both of these
practices on their software products

Java Unit-Testing Frameworks

n  Easiest to manage testing operations within a test
framework
q  Each unit-test is implemented as a separate method
q  Can group tests into different categories

n  e.g. “smoke tests,” “regression tests,” “long tests”
q  Run groups of tests from a unified entry-point
q  View summary results in a clean and concise way

n  Java has two very well-known testing frameworks
q  JUnit (http://www.junit.org)

n  Older and well-established, but with some big limitations
q  TestNG (http://testng.org)

n  New alternative created to solve JUnit’s deficiencies

JUnit vs. TestNG

n  JUnit is focused primarily on unit-testing
q  Does a great job with simple unit-testing
q  Doesn’t do so well with integration testing, or other

more advanced testing patterns
n  TestNG is designed to handle many different

kinds of testing
q  Unit testing and integration testing both supported
q  Can specify dependencies between tests

n  For integration tests, may need a series of steps

n  We will use TestNG this term

Tests and Annotations

n  Old JUnit 3.x approach:
q  Implement test methods on a test class

n  Method name must start with “test”
n  Method signature: no arguments, no return-value
n  Method must have public access, and cannot be static.

n  JUnit 4 and TestNG approach:
q  Annotate test methods with a @Test annotation
q  No other real requirements on test methods

n  Both test frameworks provide many other
annotations for various uses

Simple TestNG Example

n  A simple test class for our word-list:
import org.testng.annotations.*;

public class TestWordList {
 /** Test the WordList default constructor. */
 @Test
 public void testDefaultCtor() {
 WordList wl = new WordList();
 assert wl.size() == 0;
 // Make sure internal set was initialized.
 assert !wl.contains("random");
 }
}

q  Add more test methods, marked with @Test etc.

Compiling Your Tests

n  Java compiler needs to know about TestNG JAR file
q  Contains the TestNG annotations, in particular

n  Example *nix command-line:
javac –cp .:testng-5.8-java15.jar

TestWordList.java

q  …assuming that all files, including TestNG JAR, are in
current directory

q  On Windows, use ; instead of : in the classpath

Running Your Tests

n  TestNG takes an XML configuration file
q  testng.xml
q  Details are on TestNG website

n  For this week, just specify the test classes on the
command-line

java –cp .:testng-5.8-java15.jar org.testng.TestNG \
 –testclasses TestWordList

q  For multiple classes, separate names with spaces
–testclasses TestWordList TestBoggleBoard

Grouping Tests

n  Can specify one or more groups for each test
/** Test the WordList default constructor. */
@Test(groups = {"basic"})
public void testDefaultCtor() {
 WordList wl = new WordList();
 assert wl.size() == 0;
 // Make sure internal set was initialized.
 assert !wl.contains("random");
}

q  groups is an array of String values
q  Can specify multiple groups:

@Test(groups = {"basic", "fileio"})

n  To run tests in one or more groups:
java ... org.testng.TestNG ... –groups basic fileio

Negative Tests

n  Tests should also exercise error handlers
q  Java methods indicate errors by throwing an exception

n  Create a test to verify that WordList constructor
throws an exception when an invalid file is specified

/** Verify behavior when a file is missing. */
@Test(groups={"fileio"},
 expectedExceptions={IOException.class})
public void testMissingFile() {
 File f = new File("missing.txt");
 assert !f.exists();
 WordList wl = new WordList(f);
}

q  Test is marked as a failure if no exception is thrown, or if a
non-matching exception is thrown

This Week’s Assignment

n  Create a BoggleBoard class for storing the
board state
q  Support N×N grids, not just 4×4
q  Populate board with strings containing A..Z, or Qu

n  Question: How to generate random letters?
n  Java has java.util.Random class for

generating random numbers
q  Lots of different methods!
q  public int nextInt(int n)

n  Generates an integer value in range [0, n)

Generating Random Letters

n  Can generate random numbers in range [0, 26)
q  How do we turn these into letters of the alphabet?

n  Some ideas:
q  Populate an ArrayList<Character> with all 26

character values
n  Use random numbers to index into the collection

q  Compute the value directly:
n  char ch = (char) (65 + rand.nextInt(26));

q  What does the 65 mean?!
n  char ch = (char) ('A' + rand.nextInt(26));

q  Always use a character literal instead of the numeric code!

Generating Random Letters (2)

n  Why is the char-cast outside the expression?
char ch = (char) ('A' + rand.nextInt(26));

q  What’s wrong with:
char ch = 'A' + (char) rand.nextInt(26);

n  In Java, result of + is going to be one of:
q  double, float, long, or int
q  For our case: char + char = int

Java Arithmetic Casting Rules

n  From the Java language spec, section 5.6.2:
q  If either operand is of type double, the other is converted to

double.
q  Otherwise, if either operand is of type float, the other is

converted to float.
q  Otherwise, if either operand is of type long, the other is

converted to long.
q  Otherwise, both operands are converted to type int.

n  Specifically, these rules are used for Java arithmetic
operators
q  Keep this in mind when writing mixed-type expressions…

This Week’s Assignment (2)

n  Besides creating the Boggle-board class,
also need to create a test suite for your code
q  For WordList, create TestWordList
q  For BoggleBoard, create TestBoggleBoard

n  Use TestNG annotations and test-harness to
run your tests

n  Make sure your test suite is complete!
n  Make sure your code passes all tests!

