CS11 — Advanced Java

Winter 2011-2012
Lecture 2

Today’s Topics

Assertions

Java 1.5 Annotations
Classpaths

Unit Testing!

Lab 2 hints ©

Assertions!

Assertions are a very useful language feature
Provide two major benefits

Can test the assumptions that your code makes

o Add statements to your code that test your assumptions

o These assertions are tested at runtime

o If assertion is violated then program is halted with an error

Assertions also document your assumptions
o Like javadoc, the code specifies its own assumptions

o Other developers can read your code and see exactly what
you think should be true

Assertions 1n Java

Java 1.4 added an assert keyword
assert result >= 0;

o Condition must evaluate to a boolean value

o No parentheses required around the condition

If the condition is false at runtime, a
java.lang.AssertionError is thrown

0 AssertionError isin the Exrror subtree of the Java
exception hierarchy

Since it's an exception, it includes a stack-trace for where the
assertion-failure occurred

o From Java API for java.lang.Error:

An Error is a subclass of Throwable that indicates
serious problems that a reasonable application should
not try to catch.

Assertions in Java (2)

Simple assert syntax:
assert cond;
o cond must evaluate to a boolean value

Can also specify details for when failure occurs:
assert cond : expr;

0 expr must evaluate to something
e.g. it cannot be a call to a void function
expr is only evaluated if cond is false

Error details should indicate what went wrong
o Make it easy to debug your software!

o Example:
assert result >= 0 : "Bad result " + result;

Disabling Assertions

Assertions are sometimes expensive to test

o Example: a class that can sort its contents

public class Sorter {
public boolean inOrder () {

... [// Iterate through contents to test
order

}

public void sort () {
. // Do the sorting magic here

assert inOrder() : "My sort is broken!";

}
}

Java can enable/disable assertions at runtime
o A class’ assertion behavior is enforced when it is loaded
o Can’t turn on/off a class’ assertions after the class is loaded

Disabling Assertions (2)

Java VM uses these arguments for assertions:
0 -enableassertions (Or -ea)
Enables assertions in all classes except system classes
0 -disableassertions (or -da)
Disables assertions in all classes except system classes
Example options:
0 —-ea package.ClassName Or -da package.ClassName
Enables/disables assertions in a specific class
o -ea package... or -da package...
Enables/disables assertions in all classes in a package
To enable/disable assertions in system classes:
0 -enablesystemassertions Or —esa
0 —-disablesystemassertions Or -dsa

Java Assertion Guidelines

Do not use Java assertions for verifying the
arguments of public APIs!

Standard Java approach is to use exceptions to flag
invalid arguments

A small set of examples from the Java API:

0 NullPointerException
null was specified for a required reference-argument
0 IndexOutOfBoundsException
an index argument was out of the required range
0 NumberFormatException
a string representation of a number is not the correct format
0 IllegalArgumentException
a general catch-all for bad arguments

Java Assertion Guidelines (2)

Don’t put required code into assertion tests!

assert set.remove(obj) : "obj not found: " + obj;

o Problem?

When this assertion is disabled, the remove operation
won’t occur at all!

Many more guidelines for assertions in Java

o For more info, see “Programming with Assertions”
http://java.sun.com/javase/6/docs/technotes/quides/language/assert.html

Java Naming Conventions

A common usage pattern for classes in Java:
o Create a class for use in a 3"-party framework

o Frequently, the class needs to adhere to certain naming
conventions
Framework can look up methods and fields on the class

External dev tools can parse the code and find methods/fields

Example: J2EE web-application frameworks
o Enterprise JavaBeans (EJBs) encapsulate web-app logic

o EJBs must implement certain interfaces, and EJB methods
must follow certain naming conventions

o When these rules are violated, J2EE application server
gets very unhappy.

Java Annotations

Java 1.5 introduces a simpler solution:

o Attach annotations (i.e. metadata) to classes, and their
fields and methods

Annotations can be extracted by external tools

o Instead of looking for methods with a particular name or
signature, retrieve all methods with a specific annotation

Annotations are also used by the Java compiler, VM

o Examples:
“this method is deprecated”
“this method implements an interface method”
“this method overrides a parent-class method”

Java Annotations (2)

Annotations are like classes
o They have a specific type
o They can contain fields to store annotation details

Annotation specifications include:

o What they can appear on (e.g. only classes, or only
methods)

o A retention policy: when and where they are made
available

“Source” — only available at compile-time

“Class” — annotations included in compiled class file, but JVM
may discard them at load-time

“Runtime” — annotations must be kept by the JVM at runtime,
so that they can be extracted and read by other code

A Simple Example

You need to write a 2D point class

public class Point2d {
private double xCoord, yCoord;

public boolean equals (Point2d obj) ({
// Implementation of equals

}
}
Problems?
o This is not a correct declaration of equals ()!
o Must take an argument of type Object
The compiler doesn't tell us there is a problem!
o Code just acts bizarrely when used with collections, etc.

Now with Annotations

Java provides some annotations for you to use
0 @Override — A method overrides a parent-class method

Update our code:

public class Point2d {
private double xCoord, yCoord;

@Override
public boolean equals (Point2d obj) {
// Implementation of equals

}
}

o Since we didn’t declare equals () properly, it doesn'’t
actually override Object.equals ()

The compiler reports an error, and now you can fix your bug.

More Annotation Details

You can create your own annotations too!
o Create your own Java class-processing tools

o 3"-party tools and frameworks have their own
annotations to use in your software

Java annotation documentation

http://java.sun.com/javase/6/docs/technotes/quides/language/annotations.html

Java Annotation Processing Tool

http://java.sun.com/javase/6/docs/technotes/quides/apt/index.html

Java Classpaths

When a Java program refers to a class, the class’
definition has to be available somewhere

import javax.vecmath.Vector3f;

Vector3f v = new Vector3f(1.0£, 0.0£, 0.0f);

o When the code is compiled, javac has to find definition of
javax.vecmath.Vector3f

o When the code is run, the JVM has to find this definition too
The classpath tells Java where to look for class
definitions

o Default classpath is the current directory “.”
o (Java system classes aren’t handled via this classpath...)

Specitying the Classpath

When you are using external libraries, you need to
specify the classpath

0 javax.vecmath.Vector3f is in Java3D library

o Not in standard Java API, and not in our local directory!
Two ways:

o Use -classpath (or -cp) argument to javac and java
o Specify the CLASSPATH environment-variable

This value is a path expression

o File-separators and path-separators depend on the OS!

o Windows: -cp C:\path\one;C:\path\two
o Linux/Mac: -cp /path/one:/path/two
o If path contains spaces, enclose it with double-quotes

Specitying the Classpath (2)

The classpath can include:
o A path to a directory, if the directory contains . class files
o A path to a specific JAR file
JAR files are archives of Java class files; JAR = Java ARchive
More on JAR files in a few weeks
(See docs and jar utility if you are curious)

Classpaths cannot simply refer to the directory
where JAR files reside!

o Must actually specify the JAR files themselves in the
classpath

Classpath Example

If our Vector3f class lives in vecmath. jar
0 If vecmath. jar is in the same directory:
javac —-cp vecmath.jar MyClass. java
o If vecmath. jar lived somewhere else:
javac -cp /path/to/vecmath.jar MyClass.java

o Running our code is similar:
java —-cp /path/to/vecmath.jar MyClass

Specifying the classpath eliminates the current

directory from the path

o May need to do this kind of thing in some circumstances:
javac -cp .:/path/to/vecmath.jar MyClass. java
java -cp .:/path/to/vecmath.jar MyClass

Testing the Word List

Last week you created a word-list class

o Wrote a very simple test for it
o A lot of functionality went untested!

Would like to create a series of test cases to
exercise our class

o Each test exercises a single feature of our class
o If a test fails, should be simple to diagnose and solve

Unit testing:
o Tests for the smallest verifiable units of your program
o In Java, the smallest testable units are methods on a class

Unit-Testing Goals

|deally, your test suite should exercise all your code
o Every code-path through your program
o Tests that verify normal behavior
o Tests that verify error-handling behavior too!
Called “negative tests”
Make sure proper exceptions are thrown in error cases
Make sure program doesn’t end up in an invalid state
Make sure program releases any allocated resources
Code-coverage tools measure how much code is
exercised by a test suite
o Several different measures for code coverage
o Critical applications often require 100% coverage

Unit-Testing Goals (2)

Unit-testing attempts to isolate each class, and
ideally each method
o Makes identification and resolution of bugs much easier

Classes frequently reference other classes...
o Often hard to test a single class in isolation

Unit-testing motivates separation of interface from
iImplementation

o Classes interact with each other through well-defined
interfaces

o Test suite provides a dummy implementation for the class
being tested to use

o Can also use dummy impl. to simulate various cases

Unit-Testing Limitations

Unit-testing is an easy way to improve software
quality

o No excuse to not employ unit-testing on your software
Still only exercises individual units...

o May be larger-scale design issues, incompatibilities, etc.

Integration testing:

o Individual components and modules are combined and
tested as a group

o Usually started after unit-testing has made good headway

System testing:
o Entire software system is tested and verified, as a whole
o Follows after integration testing has made good progress

Regression Testing

One other important testing methodology to know
about: regression testing

Scenario:
o You are working on a software project that has a test suite

o You make some changes to the project...
o Suddenly there are new failures for tests that used to pass!

This is called a regression
o You broke a feature that used to work (more common)
o You added code that exposed a hidden bug (less common)

Extremely important to prevent regressions!
o Especially true when fixing bugs on released software

o Customer wants a bug-fix release that makes their life
better, not worse.

Regression Testing (2)

Two main practices for finding and preventing
regressions!

First practice:

o When you add a new feature or fix a bug, run the entire test
suite against your software

o If your test suite is complete, will quickly identify any
regressions that your changes have caused

Second practice:

o Whenever a new bug is discovered, write a specific test
case to check for that specific bug

Good software companies employ both of these
practices on their software products

Java Unit-Testing Frameworks

Easiest to manage testing operations within a test
framework
o Each unit-test is implemented as a separate method

o Can group tests into different categories
e.g. “'smoke tests,” “regression tests,” “long tests”

o Run groups of tests from a unified entry-point
o View summary results in a clean and concise way

Java has two very well-known testing frameworks

a JUnit (http://www.junit.org)
Older and well-established, but with some big limitations

o TestNG (http://testng.org)
New alternative created to solve JUnit's deficiencies

JUnit vs. TestNG

JUnit is focused primarily on unit-testing

o Does a great job with simple unit-testing

o Doesn’t do so well with integration testing, or other
more advanced testing patterns

TestNG is designed to handle many different
kinds of testing
o Unit testing and integration testing both supported
o Can specify dependencies between tests

For integration tests, may need a series of steps

We will use TestNG this term

Tests and Annotations

Old JUnit 3.x approach:

o Implement test methods on a test class
Method name must start with “test”
Method signature: no arguments, no return-value
Method must have public access, and cannot be static.

JUnit 4 and TestNG approach:
o Annotate test methods with a @Test annotation
2 No other real requirements on test methods

Both test frameworks provide many other
annotations for various uses

Simple TestNG Example

A simple test class for our word-list:

import org.testng.annotations.*;

public class TestWordList ({
/** Test the WordList default constructor. */
@QTest
public void testDefaultCtor() {
WordList wl = new WordList() ;
assert wl.size() == 0;
// Make sure internal set was initialized.
assert !'wl.contains("random") ;

}
o Add more test methods, marked with @Test etc.

Compiling Your Tests

Java compiler needs to know about TestNG JAR file
o Contains the TestNG annotations, in particular

Example *nix command-line:

javac -cp .:testng-5.8-javalb. jar
TestWordList. java

o ...assuming that all files, including TestNG JAR, are in
current directory

o On Windows, use ; instead of : in the classpath

Running Your Tests

TestNG takes an XML configuration file

0 testng.xml
o Details are on TestNG website

For this week, just specify the test classes on the

command-line

java —-cp .:testng-5.8-javal5.jar org.testng.TestNG \
—testclasses TestWordList

o For multiple classes, separate names with spaces
—testclasses TestWordList TestBoggleBoard

Grouping Tests

Can specify one or more groups for each test
/** Test the WordList default constructor. */
@Test (groups = {"basic"})
public void testDefaultCtor () ({
WordList wl = new WordList() ;
assert wl.size() == 0;
// Make sure internal set was initialized.
assert 'wl.contains ("random") ;

}
0 groups is an array of String values
o Can specify multiple groups:
@Test (groups = {"basic", "fileio"})

To run tests in one or more groups:

java ... org.testng.TestNG ... —groups basic fileio

Negative Tests

Tests should also exercise error handlers
o Java methods indicate errors by throwing an exception

Create a test to verify that WordList constructor
throws an exception when an invalid file is specified

/** Verify behavior when a file is missing. */
@Test (groups={"fileio"},
expectedExceptions={IOException.class})

public void testMissingFile () {

File £ = new File("missing.txt") ;

assert !'f.exists|();

WordList wl = new WordList (f) ;
}

o Testis marked as a failure if no exception is thrown, or if a
non-matching exception is thrown

This Week’s Assignment

Create a BoggleBoard class for storing the
board state

o Support NxN grids, not just 4x4

o Populate board with strings containing A..Z, or Qu
Question: How to generate random letters?
Java has java.util.Random class for
generating random numbers

o Lots of different methods!

0 public int nextInt(int n)
Generates an integer value in range [0, n)

Generating Random Letters

Can generate random numbers in range [0, 26)
o How do we turn these into letters of the alphabet?

Some ideas:

o Populate an ArrayList<Character> with all 26
character values

Use random numbers to index into the collection

o Compute the value directly:

char ch (char) (65 + rand.nextInt(26));
0 What does the 65 mean?!

char ch = (char) ('A' + rand.nextInt(26));
0 Always use a character literal instead of the numeric code!

Generating Random Letters (2)

Why is the char-cast outside the expression?
char ch = (char) ('A' + rand.nextInt(26))
o What’ s wrong with:
char ch = 'A' + (char) rand.nextInt(26)

In Java, result of + is going to be one of:

0 double, float, long, Or int
o For our case: char + char = int

Java Arithmetic Casting Rules

From the Java language spec, section 5.6.2:

o If either operand is of type double, the other is converted to
double.

o Otherwise, if either operand is of type float, the other is
converted to float.

o Otherwise, if either operand is of type long, the other is
converted to long.

o Otherwise, both operands are converted to type int.

Specifically, these rules are used for Java arithmetic
operators

o Keep this in mind when writing mixed-type expressions...

This Week’s Assignment (2)

Besides creating the Boggle-board class,
also need to create a test suite for your code

0 For WordList, create TestWordList
o For BoggleBoard, create TestBoggleBoard

Use TestNG annotations and test-harness to
run your tests

Make sure your test suite is complete!
Make sure your code passes all tests!

