CS11 — Advanced Java

Winter 2011-2012
Lecture 1

Welcome!

~8 lectures

Lab sequence focuses on a larger project
o Completion will probably take entire term

o Lots of opportunities to use neat Java features!
o Opportunities to use other tools and libraries

Grading

o All labs must be correct, and of good quality
2 Any issues in your work will require fixing

o Must pass all assignments to pass course

Assignments and Grading

Labs focus on lecture topics

o ...and lectures cover tricky points in labs

o Come to class! | give extra hints. ©

Labs are given a score in range 0..3, and feedback
o If your code is broken, you will have to fix it.

o If your code is sloppy, you will have to clean it up.

Must have a total score of 18/24 to pass CS11 Java
o (or 75% of the possible points in the class)

o Can definitely pass without completing all labs

Please turn in assignments on time
o You will lose 0.5 points per day on late assignments

L.ab Submissions

Using csman homework submission website:
o https://csman.cs.caltech.edu

o Many useful features, such as email notifications
Must have a CS cluster account to submit

o csman authenticates against CS cluster account

CS cluster account also great for doing labs!

o Can easily do the labs on your own machine,
since Java works the same anywhere

o Just make sure you have Java 1.6+

Advanced Javar

Assumes the following Java knowledge:

o Familiarity with classes, access-modifiers, inheritance,
nested classes

Basic familiarity with exceptions and exception-handling
Basic familiarity with Swing APIl, AWT events

Basic understanding of Java collection classes

Good coding style, Java naming conventions

Focuses on:
o Techniques for larger-scale projects

Automated build-tools, unit-testing, doc-gen, etc.
o More esoteric aspects of Java language and API

o 0O O O

‘ Advanced Java Project

= We will write a networked
Boggle game

= Boggle is a word game

0 4x4 grid of letters
“A” .. "Z" and "Qu”
o Players form words
from the grid
= Start at a particular cell
= Take steps in any direction

= Letters cannot be reused
In a word

Advanced Java Project (2)

At the end of each round, players compare their
word-lists

o If multiple players found a particular word, it is removed
from everybody’s list

o Players get points for the words that only they found.

Words are scored based on their length
3-4 letters: 1 point

O letters: 2 points

6 letters: 3 points

[letters: 5 points

8+ letters: 11 points

“Qu” is scored as two letters, not one.

L O 0 0 0 O

This Week: A Warm-Up

Create a class to represent lists of words
Each word appears exactly once in the list

Want efficient add/remove operations and
membership tests

Need to support certain “set operations”
o Add a word-list into another word-list (set union)
o Subtract a word-list from another (set difference)

Need to support loading a word-list from a file
o For the dictionary of “known valid words”

Implementing the Word-List

Java provides us with tools to make this easy
o String manipulation operations

o Collection classes

o File 10 operations

Use these tools to make your life easier! ©

2 Your code for this week should be pretty
straightforward.

Java Collections

Very powerful set of classes for managing
collections of objects

o Introduced in Java 1.2

Provides:

o Interfaces specifying different kinds of collections
o Implementations with different characteristics

o lterators for traversing a collection’s contents

o Some common algorithms for collections

Very useful, but nowhere near the power and
flexibility of C++ STL

Collection Interfaces

Generic collection interfaces defined in java.util
o Defines basic functionality for each kind of collection

Collection — generic “bag of objects”
List — linear sequence of items, accessed by index

Queue — linear sequence of items “for processing”
o Can add an item to the queue

o Can “get the next item” from the queue

o What is “next” depends on queue implementation

Set — a collection with no duplicate elements
Map — associates values with unique keys

More Collection Intertaces

A few more collection interfaces:
0 SortedSet (extends Set)
0 SortedMap (extends Map)

o These guarantee iteration over elements in a
particular order

These require elements to be comparable

a2 Must be able to say an element is “less than” or
“greater than” another element

o Provide a total ordering of elements used with the
collection

Common Collection Operations

Collections typically provide these operations:

Q

Q

o O O O

add (Object o) — add an object to the collection
remove (Object o) —remove the object

clear () — remove all objects from collection
size () — returns a count of objects in collection
isEmpty () — returns true if collection is empty
iterator () — traverse contents of collection

Some operations are optional
Some operations are slower/faster

Collection Implementations

Multiple implementations of each interface
o All provide the same basic features

o Different storage requirements

o Different performance characteristics

o Sometimes other enhancements too

Java API Documentation gives the details!
o See interface API Docs for list of implementers

o Read API Docs of implementations for
performance and storage details

List Implementations

LinkedList — doubly-linked list

Each node has reference to previous and next nodes
O(N)-time access of i element

Constant-time append/prepend/insert

Nodes use extra space (previous/next references, etc.)
Best for when list changes frequently over time

Has extra functions for get/remove first/last elements

ArrayList — stores elements in an array
o Constant-time access of i element

o Append is usually constant-time

o O(N)-time prepend/insert
a
a

o OO0 0 0 0

Best for when list doesn’t change much over time
Has extra functions for turning into a simple array

Set Implementations

HashSet

o Elements are grouped into “buckets” based on a hash code
o Constant-time add/remove operations

o Constant-time “contains” test

o Elements are stored in no particular order

o Elements must provide a hash function

TreeSet

o Elements are kept in sorted order
Stored internally in a balanced tree

o O(log(N))-time add/remove operations

o O(log(N))-time “contains” test

o Elements must be comparable

Map Implementations

Very similar to Set implementations
o These are associative containers
0o Keys are used to access values stored in maps
o Each key appears only once
(No multiset/multimap support in Java collections)
HashMap
o Keys are hashed
o Fast lookups, but random ordering

TreeMap
o Keys are sorted
o Slower lookups, but kept in sorted order

Collections and Objects

Up to Java 1.4, collections only stored
Object references

LinkedList points = new LinkedList() ;

points.add (new Point (3, 5));

Point p = (Point) points.get(0) ;
Could add non-Point objects to your
points collection!

o Retrieval could fail with ClassCastException

Also, casting everything just gets annoying
o Older collection code was littered with casts

Java 1.5 Generics

Java 1.5 introduced generics

Specify the type of objects stored in your collection:
LinkedList<Point> points =
new LinkedList<Point> () ;
points.add (new Point (3, 5));
Point p = points.get(0);
Compiler only allows Point objects to be added to
the points collection
o Compile-time error if you try to pass another reference type

No cast is necessary when retrieving Point objects
from the collection

Collections and Generics

Lists and sets are easy:

HashSet<String> wordList = new HashSet<String> () ;
LinkedList<Point> waypoints = new LinkedList<Point> () ;

o Element type must appear in both variable decl.
and in new-expression

Maps are more verbose:

TreeMap<String, WordDefinition> dictionary =

new TreeMap<String, WordDefinition>() ;

a First type is key type, second is the value type
See Java API Docs for available operations

Iteration Over Collections

Often want to iterate over values in collection

ArrayList collections are easy:
ArraylList<String> quotes;

for (int i = 0; i < quotes.size(); i++)
System.out.println (quotes.get(i));
o Impossible/undesirable for other collections!

lterators are used to traverse contents
Iterator is another simple interface:

0 hasNext () — Returns true if can call next ()

0 next () — Returns next element in the collection
ListIterator extends Iterator

o Provides many additional features over Iterator

Using Iterators

Collections provide an iterator () method
o Returns an iterator for traversing the collection

Example:
HashSet<Player> players;

Iterator<Player> iter = players.iterator();
while (iter.hasNext()) {
Player p = iter.next();
. // Do something with p

}
o lterator should also use generics

o Can use iterator to delete current element, etc.

Java 1.5 Enhanced For-l.oop Syntax

Setting up and using an iterator is annoying

Java 1.5 introduces syntactic sugar for this:
for (Player p : players) ({
. // Do something with p
}

a Can’ t access actual iterator used in loop
o Best for simple scans over a collection’ s contents

Can also use enhanced for-loop syntax with arrays:
float sum(float[] wvalues) {
float result = 0.0f;
for (float val : wvalues)
result += val;
return result;

}

Collection Elements

Collection elements may require certain capabilities

List elements don’ t need anything special

0 ...unless contains (), remove (), etc. are used!

o Then, elements should provide a correct equals ()
Implementation

Requirements for equals():

0 a.equals(a) returns true

0 a.equals(b) same as b.equals (a)

o Ifa.equals (b) is true and b.equals (c) is true, then
a.equals (c) is also true

0 a.equals(null) returns false

Set Elements, Map Keys

Sets and maps require special features
o Sets require these operations on set-elements
o Maps require these operations on the keys

equals () must definitely work correctly

TreeSet, TreeMap require sorting capability

o Element or key class must implement
java.lang.Comparable interface

o Or, an appropriate implementation of
java.util.Comparator must be provided
HashSet, HashMap require hashing capability

o Element or key class must provide a good implementation
of Object.hashCode ()

Fun with Java Generics

You write this code:

// Helper to print the contents of a list
void printList(List<Object> 1lst) {
for (Object o : 1lst)

System.out.print(" " + 0);
}

List<Point> points = new LinkedList<Point>() ;
// Fill in the list with some points.
printList (points) ;

Should Java allow this code?

Fun with Java Generics (2)

If this code were allowed, printList ()

could add arbitrary objects to points!

// Helper to print the contents of a list
void printList (List<Object> 1lst) {
for (Object o : 1lst)
System.out.print(" " + 0);

}

List<Point> points = new LinkedList<Point>() ;
// Fill in the list with some points.

printList (points) ;
Fortunately, Java does not compile this. ©

Input/Output in Java

java.io package contains classes for reading and

writing data

o File 10 — reading/writing individual files on the filesystem

o Device IO — network sockets, serial ports, other external
devices

A second package was added in Java 1.4

o java.nio, for advanced |O operations

o Examples:
Mapping part of a file into memory for high-performance
reading/writing
Being able to listen for data on many network sockets at the
same time

Basic 10 1n Java

In java . io package, two major categories of 10
operations

Reading and writing byte-streams:

0 InputStream, OutputStream, and (many) subclasses
o Good for reading/writing raw data

Reading and writing character-streams:

0 Reader, Writer, and subclasses

o Good for reading/writing text, especially locale-specific text
Input/output stream and reader/writer classes are

abstract base classes
o Concrete implementations are provided for specific uses

Input-Stream Operations

Input stream and reader base
classes provide a set of
basic operations

int read()

o Reads one byte
int read(byte[] b)

o Reads into an array of bytes
int available ()

o Estimates how many bytes
can be read without
blocking

long skip(long n)

o Skips over, and discards, n
bytes from the stream

void mark (int rdlimit)

o Remembers the “current
position” of the stream

void reset ()

o Resets the stream position
to the last marked position

void close()
o Closes the input stream

Readers are nearly identical,
but read char values
instead of byte values

Not all streams provide all of
these capabilities!

Output-Stream Operations

Output streams are much simpler:
void write(int b)
Writes one byte
void write (byte[] b)
Writes out an array of bytes
void flush()
Forces any buffered bytes out the stream
void close()
Closes the output stream
Writers have similar capabilities
o Again, writers use char instead of byte

o Also have a few extra methods, for strings and character
sequences

General Approach for Java 1O

1. Get an input-stream or output-stream for a source

or target of data

// filePath is path and filename of a specific file
FileInputStream fis = new FileInputStream(filePath) ;

2. If necessary, wrap the stream with another stream
to add any needed capabilities

// Buffer the stream so small reads are more efficient
BufferedInputStream bis =
new BufferedInputStream(£fis) ;

3. Use the outermost stream for 10 operations.
// Read some data from the input file.
byte[] buf = new byte[1024];
bis.read (buf) ;

Some Useful Stream Classes

java.io.FilelnputStream and FileOutputStream for
reading and writing data files

java.net.Socket has getlnputStream() and
getOutputStream() methods

java.util.zip package has compression libraries

o Can open an input-stream or output-stream on an entry
within a .zip file, for example

java.io.ByteArraylnputStream and
ByteArrayOutputStream

o Provide stream operations for growable arrays of bytes

Streams and Readers

Most input/output stream providers don't also
provide readers/writers

Two classes to convert to reader/writer:

0 java.lio.InputStreamReader
Constructor takes an InputStream object

0 java.io.OutputStreamWriter

Constructor takes an OutputStream object
Very useful when you need to read/write text
over an input/output stream

File 1O 1n Java

Several ways to represent a file or directory
o A String containing the path to the file/directory
o0 Ajava.io.File object
Provides many useful features!
Convert a relative path to an absolute path, or vice versa
Get File objects for all root directories of the filesystem
Test if a file exists, if it’ s readable or writable, etc.
Java has classes for opening file input/output
streams, as well as opening readers/writers on files
o Makes it easy to work with binary files or text files
o Can pass these classes a String path, or a File object

API Documentation

Documenting code is extremely important

o Specify requirements and expected behaviors

o Record design-decisions in the code

o Any important usage detalils, error conditions, etc.

Best practice is to put these docs into the code itself
o Good commenting practices...
o Much easier to keep up-to-date if in same place

Automatic doc-gen tools can process your source-
files and generate useful/pretty API-docs
o Exactly how the Sun Java API-Docs are produced!

Javadoc!

Sun provides javadoc tool with Java Developer Kit

javadoc processes your source-files

o Comments starting with /** are javadoc comments
o Must precede classes, fields, methods, etc.

o Comments inside method-bodies are ignored.

Example:
/**
* A class to represent a player's spaceship.
*/
public class PlayerShip {
/** Location of the ship's center. */
Point2D.Float loc;

Javadoc Comments

Javadoc generates a “brief” comment and a
“detailed” comment

Brief comment is first sentence of javadoc comment
o Used in lists of classes, methods, fields, etc.

Detailed comment is everything in the comment
o Used in docs for a particular class, method, field, etc.

Make that first sentence count!

o A brief summary statement, containing essential details.

o Other details go in subsequent sentences, and will appear
In detailed docs.

Javadoc Tags!

Can embed tags in your javadoc comments
o Link to other relevant classes

o Associate special meaning with specific notes

o Tag formatis @tag, or {@inlinetag}

Example:
/**

* A class to represent a player's spaceship.
*

* Q@Qauthor Donnie Pinkston
* @Qversion 1.0
*/

public class PlayerShip {

Javadoc Tag Usage

Different tags can be used in different places

Can be used only on classes and interfaces:

0 @author — person who wrote the class/interface

0 @version — current version information

Can be used only on constructors and methods:

0 @param — describe individual parameters
0 @return — describe what a method returns
0 @throws — what exceptions are thrown, and when

Can appear on anything:

0 @see — refer to another class, interface, method, etc.

0 @since — version where this thing was introduced

0 Qdeprecated — mark as “shouldn’t be used anymore”

Reterring to Other Classes, etc.

@see tag lets you refer to another class, etc.
Refer to another class:

@see TargetZone

Refer to a field or method in another class:

@see TargetZonei#loc
@see TargetZone#intersects (PlayerShip)

Refer to another field or method in this class:

@see #dirAngle
@see #turnLeft ()

Can also embed {@1link ...} tagsin comments
o Syntax is similar to @see tags

Running Javadoc

Can run javadoc from command-line
javadoc -d docs *.java

-d option specifies where to put the results

o Can specify a relative or absolute path

o Directory is created automatically

o Default target is the current directory! Yuck.

o Entry-point for API-docs is index.html file.

Javadoc has many more details and options!

o Will dig into these in subsequent weeks
http://java.sun.com/j2se/1.5.0/docs/quide/javadoc/index.html

This Week's Assignment

Write a basic class for representing word-lists
o Support all necessary operations for Boggle game
o Support ability to load a list of words from a file

o Write a simple test class to try out your code

Comment your code!

o Use javadoc-style comments

o Run javadoc to generate results

o Comment every class and method, at least briefly
o Easier to do this as you go!

Next Week

Specifying metadata for classes and methods
using Java annotations

Creating automated test suites for your
classes

