
CS11 – Advanced Java

Winter 2011-2012
Lecture 1

Welcome!

n  ~8 lectures
n  Lab sequence focuses on a larger project

q  Completion will probably take entire term
q  Lots of opportunities to use neat Java features!
q  Opportunities to use other tools and libraries

n  Grading
q  All labs must be correct, and of good quality
q  Any issues in your work will require fixing
q  Must pass all assignments to pass course

Assignments and Grading

n  Labs focus on lecture topics
q  …and lectures cover tricky points in labs
q  Come to class! I give extra hints. J

n  Labs are given a score in range 0..3, and feedback
q  If your code is broken, you will have to fix it.
q  If your code is sloppy, you will have to clean it up.

n  Must have a total score of 18/24 to pass CS11 Java
q  (or 75% of the possible points in the class)
q  Can definitely pass without completing all labs

n  Please turn in assignments on time
q  You will lose 0.5 points per day on late assignments

Lab Submissions

n  Using csman homework submission website:
q  https://csman.cs.caltech.edu
q  Many useful features, such as email notifications

n  Must have a CS cluster account to submit
q  csman authenticates against CS cluster account

n  CS cluster account also great for doing labs!
q  Can easily do the labs on your own machine,

since Java works the same anywhere
q  Just make sure you have Java 1.6+

Advanced Java?

n  Assumes the following Java knowledge:
q  Familiarity with classes, access-modifiers, inheritance,

nested classes
q  Basic familiarity with exceptions and exception-handling
q  Basic familiarity with Swing API, AWT events
q  Basic understanding of Java collection classes
q  Good coding style, Java naming conventions

n  Focuses on:
q  Techniques for larger-scale projects

n  Automated build-tools, unit-testing, doc-gen, etc.
q  More esoteric aspects of Java language and API

Advanced Java Project

n  We will write a networked
Boggle game

n  Boggle is a word game
q  4x4 grid of letters

n  “A” .. “Z” and “Qu”
q  Players form words

from the grid
n  Start at a particular cell
n  Take steps in any direction
n  Letters cannot be reused

in a word

Advanced Java Project (2)

n  At the end of each round, players compare their
word-lists
q  If multiple players found a particular word, it is removed

from everybody’s list
q  Players get points for the words that only they found.

n  Words are scored based on their length
q  3-4 letters: 1 point
q  5 letters: 2 points
q  6 letters: 3 points
q  7 letters: 5 points
q  8+ letters: 11 points
q  “Qu” is scored as two letters, not one.

This Week: A Warm-Up

n  Create a class to represent lists of words
n  Each word appears exactly once in the list
n  Want efficient add/remove operations and

membership tests
n  Need to support certain “set operations”

q  Add a word-list into another word-list (set union)
q  Subtract a word-list from another (set difference)

n  Need to support loading a word-list from a file
q  For the dictionary of “known valid words”

Implementing the Word-List

n  Java provides us with tools to make this easy
q  String manipulation operations
q  Collection classes
q  File IO operations

n  Use these tools to make your life easier! J
q  Your code for this week should be pretty

straightforward.

Java Collections

n  Very powerful set of classes for managing
collections of objects
q  Introduced in Java 1.2

n  Provides:
q  Interfaces specifying different kinds of collections
q  Implementations with different characteristics
q  Iterators for traversing a collection’s contents
q  Some common algorithms for collections

n  Very useful, but nowhere near the power and
flexibility of C++ STL

Collection Interfaces

n  Generic collection interfaces defined in java.util
q  Defines basic functionality for each kind of collection

n  Collection – generic “bag of objects”
n  List – linear sequence of items, accessed by index
n  Queue – linear sequence of items “for processing”

q  Can add an item to the queue
q  Can “get the next item” from the queue
q  What is “next” depends on queue implementation

n  Set – a collection with no duplicate elements
n  Map – associates values with unique keys

More Collection Interfaces

n  A few more collection interfaces:
q  SortedSet (extends Set)
q  SortedMap (extends Map)
q  These guarantee iteration over elements in a

particular order
n  These require elements to be comparable

q  Must be able to say an element is “less than” or
“greater than” another element

q  Provide a total ordering of elements used with the
collection

Common Collection Operations

n  Collections typically provide these operations:
q  add(Object o) – add an object to the collection
q  remove(Object o) – remove the object
q  clear() – remove all objects from collection
q  size() – returns a count of objects in collection
q  isEmpty() – returns true if collection is empty
q  iterator() – traverse contents of collection

n  Some operations are optional
n  Some operations are slower/faster

Collection Implementations

n  Multiple implementations of each interface
q  All provide the same basic features
q  Different storage requirements
q  Different performance characteristics
q  Sometimes other enhancements too

n  Java API Documentation gives the details!
q  See interface API Docs for list of implementers
q  Read API Docs of implementations for

performance and storage details

List Implementations

n  LinkedList – doubly-linked list
q  Each node has reference to previous and next nodes
q  O(N)-time access of ith element
q  Constant-time append/prepend/insert
q  Nodes use extra space (previous/next references, etc.)
q  Best for when list changes frequently over time
q  Has extra functions for get/remove first/last elements

n  ArrayList – stores elements in an array
q  Constant-time access of ith element
q  Append is usually constant-time
q  O(N)-time prepend/insert
q  Best for when list doesn’t change much over time
q  Has extra functions for turning into a simple array

Set Implementations

n  HashSet
q  Elements are grouped into “buckets” based on a hash code
q  Constant-time add/remove operations
q  Constant-time “contains” test
q  Elements are stored in no particular order
q  Elements must provide a hash function

n  TreeSet
q  Elements are kept in sorted order

n  Stored internally in a balanced tree
q  O(log(N))-time add/remove operations
q  O(log(N))-time “contains” test
q  Elements must be comparable

Map Implementations

n  Very similar to Set implementations
q  These are associative containers
q  Keys are used to access values stored in maps
q  Each key appears only once

n  (No multiset/multimap support in Java collections)
n  HashMap

q  Keys are hashed
q  Fast lookups, but random ordering

n  TreeMap
q  Keys are sorted
q  Slower lookups, but kept in sorted order

Collections and Objects

n  Up to Java 1.4, collections only stored
Object references
LinkedList points = new LinkedList();
points.add(new Point(3, 5));
Point p = (Point) points.get(0);

n  Could add non-Point objects to your
points collection!
q  Retrieval could fail with ClassCastException

n  Also, casting everything just gets annoying
q  Older collection code was littered with casts

Java 1.5 Generics

n  Java 1.5 introduced generics
n  Specify the type of objects stored in your collection:

LinkedList<Point> points =
 new LinkedList<Point>();
points.add(new Point(3, 5));
Point p = points.get(0);

n  Compiler only allows Point objects to be added to
the points collection
q  Compile-time error if you try to pass another reference type

n  No cast is necessary when retrieving Point objects
from the collection

Collections and Generics

n  Lists and sets are easy:
HashSet<String> wordList = new HashSet<String>();
LinkedList<Point> waypoints = new LinkedList<Point>();

q  Element type must appear in both variable decl.
and in new-expression

n  Maps are more verbose:
TreeMap<String, WordDefinition> dictionary =
 new TreeMap<String, WordDefinition>();

q  First type is key type, second is the value type
n  See Java API Docs for available operations

Iteration Over Collections

n  Often want to iterate over values in collection
n  ArrayList collections are easy:

ArrayList<String> quotes;
...
for (int i = 0; i < quotes.size(); i++)
 System.out.println(quotes.get(i));

q  Impossible/undesirable for other collections!
n  Iterators are used to traverse contents
n  Iterator is another simple interface:

q  hasNext() – Returns true if can call next()
q  next() – Returns next element in the collection

n  ListIterator extends Iterator
q  Provides many additional features over Iterator

Using Iterators

n  Collections provide an iterator() method
q  Returns an iterator for traversing the collection

n  Example:
HashSet<Player> players;
...
Iterator<Player> iter = players.iterator();
while (iter.hasNext()) {
 Player p = iter.next();
 ... // Do something with p
}

q  Iterator should also use generics
q  Can use iterator to delete current element, etc.

Java 1.5 Enhanced For-Loop Syntax

n  Setting up and using an iterator is annoying
n  Java 1.5 introduces syntactic sugar for this:

for (Player p : players) {
 ... // Do something with p
}

q  Can’t access actual iterator used in loop
q  Best for simple scans over a collection’s contents

n  Can also use enhanced for-loop syntax with arrays:
float sum(float[] values) {
 float result = 0.0f;
 for (float val : values)
 result += val;
 return result;
}

Collection Elements

n  Collection elements may require certain capabilities
n  List elements don’t need anything special

q  …unless contains(), remove(), etc. are used!
q  Then, elements should provide a correct equals()

implementation
n  Requirements for equals():

q  a.equals(a) returns true
q  a.equals(b) same as b.equals(a)
q  If a.equals(b) is true and b.equals(c) is true, then
a.equals(c) is also true

q  a.equals(null) returns false

Set Elements, Map Keys

n  Sets and maps require special features
q  Sets require these operations on set-elements
q  Maps require these operations on the keys

n  equals() must definitely work correctly
n  TreeSet, TreeMap require sorting capability

q  Element or key class must implement
java.lang.Comparable interface

q  Or, an appropriate implementation of
java.util.Comparator must be provided

n  HashSet, HashMap require hashing capability
q  Element or key class must provide a good implementation

of Object.hashCode()

Fun with Java Generics

n  You write this code:
// Helper to print the contents of a list
void printList(List<Object> lst) {
 for (Object o : lst)
 System.out.print(" " + o);
}

List<Point> points = new LinkedList<Point>();
... // Fill in the list with some points.
printList(points);

n  Should Java allow this code?

Fun with Java Generics (2)

n  If this code were allowed, printList()
could add arbitrary objects to points!

// Helper to print the contents of a list
void printList(List<Object> lst) {
 for (Object o : lst)
 System.out.print(" " + o);
}

List<Point> points = new LinkedList<Point>();
... // Fill in the list with some points.
printList(points);

n  Fortunately, Java does not compile this. J

Input/Output in Java

n  java.io package contains classes for reading and
writing data
q  File IO – reading/writing individual files on the filesystem
q  Device IO – network sockets, serial ports, other external

devices
n  A second package was added in Java 1.4

q  java.nio, for advanced IO operations
q  Examples:

n  Mapping part of a file into memory for high-performance
reading/writing

n  Being able to listen for data on many network sockets at the
same time

Basic IO in Java

n  In java.io package, two major categories of IO
operations

n  Reading and writing byte-streams:
q  InputStream, OutputStream, and (many) subclasses
q  Good for reading/writing raw data

n  Reading and writing character-streams:
q  Reader, Writer, and subclasses
q  Good for reading/writing text, especially locale-specific text

n  Input/output stream and reader/writer classes are
abstract base classes
q  Concrete implementations are provided for specific uses

Input-Stream Operations

Input stream and reader base
classes provide a set of
basic operations

int read()
q  Reads one byte

int read(byte[] b)
q  Reads into an array of bytes

int available()
q  Estimates how many bytes

can be read without
blocking

long skip(long n)
q  Skips over, and discards, n

bytes from the stream

void mark(int rdlimit)
q  Remembers the “current

position” of the stream
void reset()

q  Resets the stream position
to the last marked position

void close()
q  Closes the input stream

Readers are nearly identical,
but read char values
instead of byte values

Not all streams provide all of
these capabilities!

Output-Stream Operations

n  Output streams are much simpler:
void write(int b)

n  Writes one byte
void write(byte[] b)

n  Writes out an array of bytes
void flush()

n  Forces any buffered bytes out the stream
void close()

n  Closes the output stream
n  Writers have similar capabilities

q  Again, writers use char instead of byte
q  Also have a few extra methods, for strings and character

sequences

General Approach for Java IO

1.  Get an input-stream or output-stream for a source
or target of data
// filePath is path and filename of a specific file
FileInputStream fis = new FileInputStream(filePath);

2.  If necessary, wrap the stream with another stream
to add any needed capabilities
// Buffer the stream so small reads are more efficient
BufferedInputStream bis =
 new BufferedInputStream(fis);

3.  Use the outermost stream for IO operations.
// Read some data from the input file.
byte[] buf = new byte[1024];
bis.read(buf);

Some Useful Stream Classes

n  java.io.FileInputStream and FileOutputStream for
reading and writing data files

n  java.net.Socket has getInputStream() and
getOutputStream() methods

n  java.util.zip package has compression libraries
q  Can open an input-stream or output-stream on an entry

within a .zip file, for example
n  java.io.ByteArrayInputStream and

ByteArrayOutputStream
q  Provide stream operations for growable arrays of bytes

Streams and Readers

n  Most input/output stream providers don’t also
provide readers/writers

n  Two classes to convert to reader/writer:
q  java.io.InputStreamReader

n  Constructor takes an InputStream object

q  java.io.OutputStreamWriter
n  Constructor takes an OutputStream object

n  Very useful when you need to read/write text
over an input/output stream

File IO in Java

n  Several ways to represent a file or directory
q  A String containing the path to the file/directory
q  A java.io.File object

n  Provides many useful features!
n  Convert a relative path to an absolute path, or vice versa
n  Get File objects for all root directories of the filesystem
n  Test if a file exists, if it’s readable or writable, etc.

n  Java has classes for opening file input/output
streams, as well as opening readers/writers on files
q  Makes it easy to work with binary files or text files
q  Can pass these classes a String path, or a File object

API Documentation

n  Documenting code is extremely important
q  Specify requirements and expected behaviors
q  Record design-decisions in the code
q  Any important usage details, error conditions, etc.

n  Best practice is to put these docs into the code itself
q  Good commenting practices…
q  Much easier to keep up-to-date if in same place

n  Automatic doc-gen tools can process your source-
files and generate useful/pretty API-docs
q  Exactly how the Sun Java API-Docs are produced!

Javadoc!

n  Sun provides javadoc tool with Java Developer Kit
n  javadoc processes your source-files

q  Comments starting with /** are javadoc comments
q  Must precede classes, fields, methods, etc.
q  Comments inside method-bodies are ignored.

n  Example:
/**
 * A class to represent a player's spaceship.
 */
public class PlayerShip {
 /** Location of the ship's center. */
 Point2D.Float loc;

 ...

Javadoc Comments

n  Javadoc generates a “brief” comment and a
“detailed” comment

n  Brief comment is first sentence of javadoc comment
q  Used in lists of classes, methods, fields, etc.

n  Detailed comment is everything in the comment
q  Used in docs for a particular class, method, field, etc.

n  Make that first sentence count!
q  A brief summary statement, containing essential details.
q  Other details go in subsequent sentences, and will appear

in detailed docs.

Javadoc Tags!

n  Can embed tags in your javadoc comments
q  Link to other relevant classes
q  Associate special meaning with specific notes
q  Tag format is @tag, or {@inlinetag}

n  Example:
/**
 * A class to represent a player's spaceship.
 *
 * @author Donnie Pinkston
 * @version 1.0
 */
public class PlayerShip {

Javadoc Tag Usage

n  Different tags can be used in different places
n  Can be used only on classes and interfaces:

q  @author – person who wrote the class/interface
q  @version – current version information

n  Can be used only on constructors and methods:
q  @param – describe individual parameters
q  @return – describe what a method returns
q  @throws – what exceptions are thrown, and when

n  Can appear on anything:
q  @see – refer to another class, interface, method, etc.
q  @since – version where this thing was introduced
q  @deprecated – mark as “shouldn’t be used anymore”

Referring to Other Classes, etc.

n  @see tag lets you refer to another class, etc.
n  Refer to another class:

@see TargetZone

n  Refer to a field or method in another class:
@see TargetZone#loc
@see TargetZone#intersects(PlayerShip)

n  Refer to another field or method in this class:
@see #dirAngle
@see #turnLeft()

n  Can also embed {@link ...} tags in comments
q  Syntax is similar to @see tags

Running Javadoc

n  Can run javadoc from command-line
javadoc -d docs *.java

n  -d option specifies where to put the results
q  Can specify a relative or absolute path
q  Directory is created automatically
q  Default target is the current directory! Yuck.
q  Entry-point for API-docs is index.html file.

n  Javadoc has many more details and options!
q  Will dig into these in subsequent weeks

http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html

This Week’s Assignment

n  Write a basic class for representing word-lists
q  Support all necessary operations for Boggle game
q  Support ability to load a list of words from a file
q  Write a simple test class to try out your code

n  Comment your code!
q  Use javadoc-style comments
q  Run javadoc to generate results
q  Comment every class and method, at least briefly
q  Easier to do this as you go!

Next Week

n  Specifying metadata for classes and methods
using Java annotations

n  Creating automated test suites for your
classes

