
CS11 Advanced C++
Spring 2018 – Lecture 1

Welcome to CS11 Advanced C++!

• A deeper dive into C++ programming language topics
• Prerequisites:

• CS11 Intro C++ track is strongly recommended (obvious)
• You should be familiar with:

• Implementing C++ classes and functions / member-functions
• Basic use of the C++ standard library - strings, collection

templates, stream IO and stream-based file IO
• Pointers and references (not necessarily rvalue-references)
• Basic operator overloading
• Proper use of const keyword
• Basic exception handling
• Using tools like make and Doxygen

Assignments and Grading

• Each lecture has a corresponding lab for the material
• Labs are due approximately one week later, at noon

• e.g. this term labs will be due on Tuesdays at noon
• Submit on csman

• Labs are given a 0..3 grade, meaning:
• 3 = excellent (masters all important parts)
• 2 = good (demonstrates mastery of key idea; a few minor issues)
• 1 = insufficient (not passing quality; significant bugs must be addressed)
• 0 = incorrect (worthy of no credit)

• Must receive at least 75% of all possible points to pass track
• Can submit up to 2 reworks of labs to improve grade
• Not uncommon for initial submission to get a 0!

• Don’t take it personally; it’s really not a big deal in CS11 tracks

Assignments and Grading (2)

• All code submitted is expected to be well documented
and written in a clean, uniform coding style
• Specifics of coding style are not as relevant to me
• Consistency is the most important thing

• Use Doxygen to generate docs from C++ code
• doxygen -g to generate initial Doxyfile config-file
• Edit configuration file to generate HTML docs only, into a

subdirectory
• doxygen should generate docs after that
• See http://www.stack.nl/~dimitri/doxygen/ for more details

• Initially will use make for building projects

http://www.stack.nl/~dimitri/doxygen/

C++ Compiler

• Can use g++/gdb or clang++/lldb for this track
• Currently most of the instructions are written for GNU toolset
• Feel free to contribute LLVM-related info along the way!

• Should be using C++14/17 for your implementations
• Can ask the compiler what version of C++ is its default

• g++ -dM -E -x c++ /dev/null | grep cplusplus
#define __cplusplus 201402L

• clang++ -dM -E -x c++ /dev/null | grep cplusplus
#define __cplusplus 199711L

• Can tell the compiler what version of C++ to use (recommended!)
• g++ -std=c++14 ...
• clang++ -std=c++14 ...
• Or, in Makefiles (recommended!): CXXFLAGS = -std=c++14

Local Variables and Destructors

• Normally, destructors are called when variables go
out of scope

void myFunction() {
Class1 var1;
Class2 var2{"out.txt"};

var1.doStuff(var2);
}

• Compiler automatically inserts destructor calls in the
appropriate places

• Your code doesn’t manually call destructors, ever.

var2.~Class2();
var1.~Class1();

Compiler adds:

Destructors and Exceptions

void myFunction() {
Class1 var1;
Class2 var2{"out.txt"};

var1.doStuff(var2);

}

• What happens if var2 constructor throws?
• Only var1 was constructed, so only var1 destructor gets

called

var2.~Class2();
var1.~Class1();

THROW!

propagate
exception

cleanup
(stack unwinding)

Destructors and Exceptions (2)

void myFunction() {
Class1 var1;
Class2 var2("out.txt");

var1.doStuff(var2);

}

• What happens if var1 constructor throws?
• Nothing was constructed, so no destructors get called

var2.~Class2();
var1.~Class1(); propagate

exception

no cleanup
needed

THROW!

Destructors and Exceptions (3)

void myFunction() {
Class1 var1;
Class2 var2("out.txt");

var1.doStuff(var2);

}

• What happens if var1.doStuff(var2) throws?
• Both var1 and var2 were constructed, so both destructors

get called (in reverse order of construction)

var2.~Class2();
var1.~Class1();

THROW!

propagate
exception

cleanup
(stack unwinding)

Classes and Exceptions

• Similar model used when constructors throw
class Logger {
LogConfig config;
RotatingFile outputFile;

public:
Logger(const string &configFile) {
... // initialize logger

}
...

};
• What happens if the constructor body throws?

• The new Logger instance failed to be constructed
• config and outputFile have already been initialized, so their

destructors are automatically called

THROW!

Classes and Exceptions (2)

• Member initialization might also throw
class Logger {
LogConfig config;
RotatingFile outputFile;

public:
Logger(const string &configFile) :
config{configFile}, outputFile{config} {
... // initialize logger

}
...

};
• What happens if outputFile constructor throws?

• The new Logger instance failed to be constructed (again)
• config was already initialized, so its destructor gets called

THROW!

Classes and Exceptions (3)

• Another member constructor throws
class Logger {
LogConfig config;
RotatingFile outputFile;

public:
Logger(const string &configFile) :
config{configFile}, outputFile{config} {
... // initialize logger

}
...

};
• What happens if config constructor throws?

• The new Logger instance failed to be constructed (yet again)
• Nothing was initialized, so no member destructors are called

THROW!

Heap-Allocation and Exceptions

• What if members are heap-allocated?
Simulator::Simulator(SimConfig *conf) {
// Initialize my simulator members.
entityData = new Entity[conf->maxEntities];
playerData = new Player[conf->maxPlayers];

}

• If an allocation fails, new will throw bad_alloc
• What happens if second allocation throws
bad_alloc?
• Simple: entityData doesn’t get cleaned up

A Safer Constructor

• Can fix the problem by doing this:
Simulator::Simulator(SimConfig *conf) :
entityData{nullptr}, playerData{nullptr} {
try {
entityData = new Entity[conf->maxEntities];
playerData = new Player[conf->maxPlayers];

}
catch (bad_alloc &ba) {
delete[] entityData;
delete[] playerData;
throw; // Don't forget to propagate this!

}
}

• Not the prettiest code, but at least it’s safe.

Again and Again!

• This pattern gets old fast:
void initSimulation() {
SimConfig *conf = new SimConfig{"sim.conf"};
Simulator *sim = new Simulator{conf};
...

}

• What if Simulator constructor throws?
• (sigh)

• This approach to leak-free, exception-safe code is a
giant pain!

Safe Resource Management

• Problem:
• Dynamic allocation of resources, plus exception-

handling, is a potentially dangerous mix!
• Memory allocated with new
• Opening files, pipes, etc.
• Threads, mutexes, condition variables, semaphores, …

• Just catching exceptions isn’t enough!
• Also need to release any resources that were

allocated before the exception was thrown.

Typical Resource Allocation Model

• General form of the problem:
void doStuff() {
// acquire resource 1
// ...
// acquire resource N

// use the resources

// release resource N
// ...
// release resource 1

}
• Resources usually released in opposite order of allocation

• Hey, C++ constructors and destructors do this!
• Local variables are created and destroyed this way

Simpler Leak-Proofing Approach

• Make a wrapper class for managing a dynamic
resource
• Constructor allocates the dynamic resource, or

constructor assumes ownership of the resource
• Destructor frees the resource
• Use the wrapper class for local variables

• i.e. don’t do “new Wrapper(resource)” !!!

• “Clean up” handlers become unnecessary
• When exception is thrown, C++ calls wrapper-class

destructor automatically, since it’s local.

Resource Acquisition Is Initialization

• Pattern called: Resource Acquisition Is Initialization
(RAII for short)
• A local variable’s constructor immediately assumes

ownership of the dynamic resource
• C++ will call the destructor at the Right Time.

• Typically realized as “smart pointers”
• They follow this model for heap-allocated memory

• This can be applied to any dynamic resource
• Files! Semaphores! Mutexes! …

C++ Smart Pointers

• C++11 Standard Library introduced two smart-pointer
classes (originally part of Boost library)
• std::shared_ptr<T> is a multiple-ownership smart

pointer for when dynamically-allocated memory is shared
by multiple parts of a program
• Manages a T*, allocated with “new T(…)”

• std::unique_ptr<T> is a single-ownership smart
pointer for when dynamically-allocated memory is used by
only one part of a program
• Also manages a T*, allocated with “new T(…)”

• #include <memory> to use these smart-pointers

C++ Smart Pointers (2)

• shared_ptr<T> uses reference-counting to track how
many parts of the program are using an object
• Reference-counting imposes a (slight) time and space overhead

• unique_ptr<T> assumes it is sole owner of the memory
• No reference-counting overhead
• Only one unique_ptr may point to a given T*

• Use unique_ptr<T> when only one part of your program
needs to access/manage a heap-allocated chunk of memory
• e.g. local variable within a function, or owned by a single object

• Use shared_ptr<T> when several parts of your program
need to access/manage a heap-allocated chunk of memory
• e.g. if multiple objects need to manage a single chunk of memory
• (e.g. if you were implementing a tree or graph data structure)

Smart Pointer Operator Overloads

• Smart pointer classes overload these operators:
• Dereference (member-access) operator ->
• Dereference operator * (not multiplication…)
• Allows the smart-pointer to act like a pointer

• Smart pointers don’t support other common pointer
operations, e.g. pointer-arithmetic
• For example: no ++ and -- operator overloads!

• Cannot use = to assign raw pointer to smart pointer
• Forces thoughtful consideration of how objects are managed
• e.g. reset(T*) to assign a raw pointer to a smart pointer,

or reset() to set a smart pointer to nullptr
• Can assign a smart pointer value to another smart pointer

Usage Examples

• Example:
#include <memory>

shared_ptr<Widget> spw{new Widget{}};
unique_ptr<Widget> upw{new Widget{}};

• Can create an alias for the shared-pointer type:
using sp_widget_t = shared_ptr<Widget>;
using up_widget_t = unique_ptr<Widget>;

sp_widget_t spw{new Widget{}};
up_widget_t upw{new Widget{}};

Usage Examples (2)

• C++ also provides two helper functions to wrap
initialization
#include <memory>

sp_widget_t spw = make_shared<Widget>{};
up_widget_t upw = make_unique<Widget>{}

• These are actually variadic function templates that
call the specified class’ constructor
• Can pass arguments to the class’ constructor as well

Usage Examples (3)

• Example:
class Widget {

...
public:

Widget();
Widget(const string &type, float weight);
...

};

spw1 = make_shared<Widget>{};
spw2 = make_shared<Widget>{"frob", 4.3};

• Heap-allocates two Widget objects, and manages
them with smart pointers
• Second Widget initialized with two-arg constructor

Smart Pointers and Destructors

• With proper use of smart pointers and
make_shared/make_unique, should never need
to directly use new or delete in your code
• Destructors also become unnecessary (!!!)

• If class wraps all allocations with smart-pointer members,
they will automatically delete allocations at the right time

• This affects the Rule of Three / Rule of Five
• If your class defines any of the following:

• A destructor, a copy-constructor, a copy-assignment operator
• [Rule of Five: A move-constructor, a move-assignment operator]

• It probably needs to define all three [all five].
• Destructor will become unnecessary, but other important

member functions are likely still essential

Smart Pointers and Destructors (2)

• Can either leave out the destructor (the compiler
will generate a default for you)
• Or, can specify you are using the default destructor

class MyClass {
MyClass() { ... }
~MyClass() = default;
...

};
• Second option will explicitly document that your

class doesn’t require a custom destructor

This Week’s Assignment

• This week:
• Build a TreeSet, an ordered set implementation, to

store int values
• Use a binary search tree for internal representation
• Each node stores a value V
• A node’s left subtree holds values less than V
• A node’s right subtree holds values greater than V
• Tree does not need to be kept balanced

• Encapsulate all implementation details!
• Class should not expose that it uses a tree internally

• Use smart pointers everywhere in implementation

This Week’s Assignment (2)

• When writing data structures in C++, must frequently
decide between using smart pointers and raw pointers
• For particularly complicated structures (e.g. graphs),

raw pointers may in fact be better than smart pointers
• Smart pointers can’t deal with cycles in reference graph due

to using reference-counting internally
• Updating reference-counts in shared pointers is a cost that

will add up over time
• A binary search tree is simple enough to use shared

pointers without increasing complexity too much
• A good opportunity to practice using smart pointers J

• Moral: Always pick the best tool for the job!

