### CS 179: LECTURE 16

MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

### LASTTIME

- Intro to cuDNN
- Deep neural nets using cuBLAS and cuDNN

### TODAY

- Building a better model for image classification
- Overfitting and regularization
- Convolutional neural nets

# MODEL COMPLEXITY

- Consider a class of models f(x; w)
  - A function f of an input x with parameters w
  - For now, let's just consider  $x \in \mathbb{R}$  (1D input) as a toy example
- Polynomial regression fits a polynomial of degree d to our input, i.e.  $f(x; w) = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$
- Intuitively, a higher degree polynomial is a more complex model function than a lower degree polynomial

# INTUITION: TAYLOR SERIES

- More formally, one model class is more complex than another if it contains more functions
- If we already know the function g that we want to approximate, we can use Taylor polynomials
  - For many functions g, we have  $g(x) = \sum_{k=0}^{\infty} w_k x^k$
  - One way to approximate is as  $g(x) \approx \sum_{k=0}^{d} w_k x^k$
- Higher degree polynomial gives a better approximation?

### INTUITION: TAYLOR SERIES

#### • Taylor expansions of sin(x) about 0 for d = 1,5,9

Taylor Approximations of sin(x)



# LEAST SQUARES FITTING

- Generally, we don't know the true function a priori
- Instead, we approximate it with a model function f(x; w)
- Rather than Taylor coefficients, we really want parameters  $w^*$  that minimize some loss function J(w) on a dataset  $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$ , e.g. mean squared error:  $w^* = \underset{w}{\operatorname{argmin}} J(w) = \underset{w}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^N \left( y^{(i)} f(x^{(i)}; w) \right)^2$

### LEAST SQUARES FITTING

#### • Least squares polynomial fits of sin(x) for d = 1,5,9

Least-Squares Polynomial Approximations of sin(x)



# WHY SHOULD YOU CARE?

- So far, it seems like you should always prefer the more complex model, right?
- That's because these toy examples assume
  - We have a LOT of data
  - Our data is noiseless
  - Our model function behaves well between our data points
- In the real world, these assumptions are almost always false!

### **UNDERFITTING & OVERFITTING**

#### Fitting polynomials to noisy data from the orange function



## UNDERFITTING & OVERFITTING

- Goal: learn a model that generalizes well to <u>unseen</u> test data
- Underfitting: model is too simple to learn any meaningful patterns in the data high training error and high test error
- Overfitting: model is so complex that it doesn't generalize well to unseen data because it pays too much attention to the training data – low training error but high test error

# UNDERFITTING & OVERFITTING

- Underfitting is easy to deal with try using a more complex model class because it is more <u>expressive</u>
  - **Complexity** is roughly the "size" of the function space encoded by a model class (the set of all functions the class can represent)
  - Expressiveness is how well that model class can approximate the functions we are interested in
- If a more complex model class overfits, can we reduce its complexity while retaining its expressiveness?

### REGULARIZATION

- If we make certain structural assumptions about the model we want to learn, we can do just this!
- These assumptions are called <u>regularizers</u>
- Most commonly, we minimize an <u>augmented loss function</u>  $\tilde{J}(w) = J(w) + \lambda R(w)$
- J(w) is the original loss function,  $\lambda$  is the regularization strength, and R(w) is a regularization term

# L<sub>2</sub> WEIGHT DECAY

- In  $L_2$  weight decay regularization,  $R(w) = w^T w = \sum_{k=1}^d w_k^2$
- Minimizing  $\tilde{J}(w) = J(w) + \lambda w^T w$ 
  - Balances the goals of minimizing the loss J(w) and finding a set of weights w that are small in magnitude
  - High  $\lambda$  means we care more about small weights, while low  $\lambda$  means we care more about a low (un-augmented) loss
- Intuitively, small weights  $w \rightarrow$  smoother function (no huge oscillations like the 9<sup>th</sup> degree polynomial we overfit)

# L<sub>2</sub> WEIGHT DECAY

#### • Regularizing a degree 9 polynomial fit with $L_2$ weight decay



# RETURNING TO NEURAL NETS

- All of the intuition we've built for polynomials is also valid for neural nets!
- The complexity of a deep neural net is related (roughly) to the number of learned parameters and the number of layers
- More complex neural nets, i.e. <u>deeper</u> (more layers) and/or <u>wider</u> (more hidden units) are much more likely to overfit to the training data.

## RETURNING TO NEURAL NETS

- L<sub>2</sub> weight decay helps us learn smoother neural nets by encouraging learned weights to be smaller.
- To incorporate  $L_2$  weight decay, just do stochastic gradient descent on the augmented loss function

$$\tilde{J}(\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}) = J(\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}) + \lambda \sum_{i,j,\ell} \mathbf{W}_{ij}^{(\ell)^2}$$
$$\nabla_{\mathbf{W}^{(\ell)}}[\tilde{J}] = \nabla_{\mathbf{W}^{(\ell)}}[J] + 2\lambda \mathbf{W}^{(\ell)}$$

# NEURAL NETS AND IMAGE DATA

- Let's now consider the special case of doing machine learning on image data with neural nets
- As we've studied them so far, neural nets model relationships between every single pair of pixels
- However, in any image, the color and intensity of neighboring pixels are much more strongly correlated than those of faraway pixels, i.e. images have <u>local structure</u>

# NEURAL NETS AND IMAGE DATA

- Images are also <u>translation invariant</u>
  - A face is still a face, regardless of whether it's in the top left of an image or the bottom right
- Can we encode these assumptions of local structure into a neural network as a regularizer?
- If we could, we would get models that learned something about our data set <u>as a collection of images</u>.

### **RECAP: CONVOLUTIONS**

- Consider a *c*-by-*h*-by-*w* convolutional kernel or filter array
   K and a *C*-by-*H*-by-*W* array representing an image X
- The convolution (technically cross-correlation)  $\mathbf{Z} = \mathbf{K} \otimes \mathbf{X}$  is  $\mathbf{Z}[i, j, k] = \sum_{\ell=0}^{c-1} \sum_{m=0}^{h-1} \sum_{n=0}^{w-1} \mathbf{K}[\ell, m, n] \mathbf{X}[i + \ell, j + m, k + n]$
- There are multiple ways to deal with boundary conditions; for now, ignore any indices that are out of bounds

# RECAP: CONVOLUTIONS (c = 1)



http://machinelearninguru.com/computer\_vision/basics/convolution/convolution\_layer.html

# RECAP: CONVOLUTIONS (c = 3)

| 0 | 0   | 0   | 0   | 0   | 0   |   |
|---|-----|-----|-----|-----|-----|---|
| 0 | 156 | 155 | 156 | 158 | 158 |   |
| 0 | 153 | 154 | 157 | 159 | 159 |   |
| 0 | 149 | 151 | 155 | 158 | 159 |   |
| 0 | 146 | 146 | 149 | 153 | 158 |   |
| 0 | 145 | 143 | 143 | 148 | 158 | · |
|   |     | ·   |     |     |     |   |

Input Channel #1 (Red)



Kernel Channel #



+

|   | 0 | 0   | 0   | 0   | 0   | 0   | 132 |
|---|---|-----|-----|-----|-----|-----|-----|
|   | 0 | 167 | 166 | 167 | 169 | 169 |     |
|   | 0 | 164 | 165 | 168 | 170 | 170 |     |
|   | 0 | 160 | 162 | 166 | 169 | 170 |     |
|   | 0 | 156 | 156 | 159 | 163 | 168 |     |
|   | 0 | 155 | 153 | 153 | 158 | 168 |     |
| ſ |   |     |     |     |     |     |     |

Input Channel #2 (Green)



Kernel Channel #2



Input Channel #3 (Blue)

 0
 1
 1

 0
 1
 0

 1
 -1
 1

Kernel Channel #3



Bias = 1

+



Same <u>source</u> as last figure













121 2 4 2 16







—11 0  $\mathbf{0}$ 





$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



# ADVANTAGES OF CONVOLUTION

- By sliding the kernel along the image, we can extract the image's local structure!
  - Large objects (by blurring)
  - Sharp edges and outlines
- Since each output pixel of the convolution is highly local, the whole process is also <u>translation invariant</u>!
- Convolution is a **linear operation**, like matrix multiplication

- So far, the main downside of convolutions is that the coefficients of the kernels seem like magic numbers So
- But if we fit a 1D quadratic regression and get the model  $f(x) = 0.382x^2 15.4x + 7$ , then aren't the coefficients 0.382, -15.4, and 7 just magic numbers too?
- Idea: <u>learn convolutional kernels instead of matrices</u> to extract something meaningful from our image data, and then feed that into a dense neural network (with matrices)

- We can do this by creating a new kind of layer, and adding it to the front (closer to the input) of our neural network
- In the forward pass, we convolve our input  $\mathbf{X}^{(\ell-1)}$  with a learned kernel  $\mathbf{K}^{(\ell)}$ , add a scalar bias  $b^{(\ell)}$  to every element of  $\mathbf{Z}^{(\ell)}$ , and apply a nonlinearity  $\theta$  to obtain our output  $\mathbf{X}^{(\ell)}$

$$\mathbf{Z}^{(\ell)} = \mathbf{K}^{(\ell)} \bigotimes \mathbf{X}^{(\ell-1)} + b^{(\ell)}$$
$$\mathbf{X}^{(\ell)} = \theta(\mathbf{Z}^{(\ell)})$$

- Note that we will actually be attempting to learn <u>multiple</u> (specifically  $c_{\ell}$ ) kernels of shape  $c_{\ell-1} \times h_{\ell} \times w_{\ell}$  per layer  $\ell$ !
  - $c_{\ell-1}$  is the number of channels in input  $\mathbf{X}^{(\ell-1)}$ , so convolving any individual kernel with  $\mathbf{X}^{(\ell-1)}$  will yield 1 output channel
  - The output  $\mathbf{X}^{(\ell)}$  is the result of all  $c_{\ell}$  of these convolutions stacked on top of each other (1 output channel per kernel)
- If input  $\mathbf{X}^{(\ell-1)}$  has shape  $c_{\ell-1} \times H_{\ell} \times W_{\ell}$ , then output  $\mathbf{X}^{(\ell)}$ will have shape  $c_{\ell} \times (H_{\ell} - h_{\ell} + 1) \times (W_{\ell} - w_{\ell} + 1)$

- We then feed the output  $\mathbf{X}^{(\ell)}$  into the next layer as its input
  - If the next layer is a dense layer, we will re-shape  $X^{(\ell)}$  into a vector (instead of a multi-dimensional array)
  - If the next layer is also convolutional, we can pass  $\mathbf{X}^{(\ell)}$  as is
- To actually learn good kernels that stage well with the layers we feed them into, we can just use the backpropagation algorithm to do stochastic gradient descent!

- Assume that we have  $\Delta^{(\ell)} = \nabla_{\mathbf{X}^{(\ell)}}[J]$  (the gradient with respect to the input of the next layer, which is also the output of this layer)
- By the chain rule, for each kernel  $\mathbf{K}^{(\ell)}$  at this layer  $\ell$ ,

$$\frac{\partial J}{\partial \mathbf{K}_{ijk}^{(\ell)}} = \sum_{a=1}^{c_{\ell}} \sum_{b=1}^{w_{\ell}} \sum_{c=1}^{h_{\ell}} \frac{\partial J}{\partial \mathbf{Z}_{abc}^{(\ell)}} \frac{\partial \mathbf{Z}_{abc}^{(\ell)}}{\partial \mathbf{K}_{ijk}^{(\ell)}}$$

By the chain rule (again)

$$\frac{\partial J}{\partial \mathbf{Z}_{abc}^{(\ell)}} = \frac{\partial J}{\partial \mathbf{X}_{abc}^{(\ell)}} \frac{\partial \mathbf{X}_{abc}^{(\ell)}}{\partial \mathbf{Z}_{abc}^{(\ell)}} = \Delta_{abc}^{(\ell)} \theta' \left( \mathbf{Z}_{abc}^{(\ell)} \right)$$

- This gives us  $\nabla_{\mathbf{Z}^{(\ell)}}[J]$ , the gradient with respect to the output of the convolution
- We can find this with cudnnActivationBackward()
   (see Lecture 15) ③

- If you give cuDNN the
  - Gradient with respect to the convolved output  $\nabla_{\mathbf{Z}^{(\ell)}}[J]$
  - Input to the convolution  $\mathbf{X}^{(\ell-1)}$
- cuDNN can compute each  $\nabla_{\mathbf{K}^{(\ell)}}[J]$ , the gradient of the loss with respect to each kernel  $\mathbf{K}^{(\ell)}$  (Lecture 17)  $\bigcirc$
- With the  $\nabla_{\mathbf{K}^{(\ell)}}[J]$ 's computed, we can do gradient descent!

- All that remains is for us to find the gradient with respect to the input to this layer  $\Delta^{(\ell-1)} = \nabla_{\mathbf{X}^{(\ell-1)}}[J]$ 
  - This is also the gradient with respect to the output of the next layer, and will be used to *continue* doing backpropagation.
- Again, cuDNN has a function for it (Lecture 17)
  - You need to provide it the kernels  $\mathbf{K}^{(\ell)}$  and the gradient with respect to the output  $\Delta^{(\ell)} = \nabla_{\mathbf{X}^{(\ell)}}[J]$  (like a dense neural net)

## POOLING LAYERS

- After each convolutional layer, it is common to add a pooling layer to down-sample the input
- Most commonly, one would take every non-overlapping  $n \times n$  window of a convolved output, and replace each window with a single pixel whose intensity is either
  - The maximum intensity found in that  $n \times n$  window
  - The mean intensity of the pixels in that  $n \times n$  window

### EXAMPLE OF $2 \times 2$ POOLING



http://ieeexplore.ieee.org/document/7590035/all-figures

# POOLING LAYERS

- Motivation: convolution compresses the amount of information in the image spatially
  - Blur  $\rightarrow$  nearby pixels are more similar
  - Edge  $\rightarrow$  "important" pixels are brighter than their surroundings
- Why not use that compression to reduce dimensionality?
- Forward and backwards propagation for pooling layers are fairly straightforward, and cuDNN can do both (Lecture 17)

# WHY BOTHER?

- Consider the MNIST dataset of handwritten digits
  - Each image is 28 × 28 pixels → 784 input dimensions, and it can be one of 10 output classes
  - If we want to train even a linear classifier (not even a neural net), we would need  $(784 + 1) \times 10 = 7850$  parameters
  - We're also modeling relationships between every pair of pixels; most of the relationships we learn probably aren't meaningful

- Let's instead consider the following convolutional net:
  - Layer I: Twenty  $(1 \times 5 \times 5)$  kernels
  - Layer 2: 2 × 2 pooling
  - Layer 3: Five  $(20 \times 3 \times 3)$  kernels
  - Layer 4: 2 × 2 pooling
  - Layer 5: Dense layer with 50 hidden units
  - Layer 6: Dense layer with 10 output units

- Input shape  $(1 \times 28 \times 28)$  (MNIST image)
- Twenty  $(1 \times 5 \times 5)$  kernels
  - $20 \times ((1 \times 5 \times 5) + 1) = 520$  parameters
  - Output shape  $(20 \times 24 \times 24)$
- $2 \times 2$  pooling
  - Output shape  $(20 \times 12 \times 12)$

- Input shape  $(20 \times 12 \times 12)$  (conv 1 + pool 1)
- Five  $(20 \times 3 \times 3)$  kernels
  - $5 \times ((20 \times 3 \times 3) + 1) = 905$  parameters
  - Output shape  $(5 \times 10 \times 10)$
- $2 \times 2$  pooling
  - Output shape  $(5 \times 5 \times 5)$

- Input shape  $(5 \times 5 \times 5)$  (conv 2 + pool 2)
- Flatten into a 125-dimensional vector
- Dense layer with 50 hidden units
  - $50 \times (125 + 1) = 6300$  parameters
  - Output is a 50-dimensional vector
- Dense layer with 10 output units
  - $10 \times (50 + 1) = 510$  parameters

- This gives us a total of 520 + 905 + 6300 + 510 = 8235 parameters, similar to the vanilla linear classifier's 7850
- However, with the same number of parameters, this model
  - Learns something more meaningful about image structure
  - Achieves a significantly better accuracy on unseen data
- We've effectively regularized the neural net to perform well on image data! HW6: implement it and see for yourself.