
CS 179: LECTURE 16

MODEL COMPLEXITY,

REGULARIZATION, AND

CONVOLUTIONAL NETS

LAST TIME

 Intro to cuDNN

 Deep neural nets using cuBLAS and cuDNN

TODAY

 Building a better model for image classification

 Overfitting and regularization

 Convolutional neural nets

MODEL COMPLEXITY

 Consider a class of models 𝑓 𝑥;𝑤

 A function 𝑓 of an input 𝑥 with parameters 𝑤

 For now, let’s just consider 𝑥 ∈ ℝ (1D input) as a toy example

 Polynomial regression fits a polynomial of degree 𝑑 to our

input, i.e. 𝑓 𝑥;𝑤 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2 +⋯+𝑤𝑑𝑥

𝑑

 Intuitively, a higher degree polynomial is a more complex

model function than a lower degree polynomial

INTUITION: TAYLOR SERIES

 More formally, one model class is more complex than

another if it contains more functions

 If we already know the function 𝑔 that we want to

approximate, we can use Taylor polynomials

 For many functions 𝑔, we have 𝑔 𝑥 = σ𝑘=0
∞ 𝑤𝑘𝑥

𝑘

 One way to approximate is as 𝑔 𝑥 ≈ σ𝑘=0
𝑑 𝑤𝑘𝑥

𝑘

 Higher degree polynomial gives a better approximation?

INTUITION: TAYLOR SERIES

 Taylor expansions of sin(𝑥) about 0 for 𝑑 = 1,5,9

LEAST SQUARES FITTING

 Generally, we don’t know the true function a priori

 Instead, we approximate it with a model function 𝑓 𝑥;𝑤

 Rather than Taylor coefficients, we really want parameters
𝑤⋆ that minimize some loss function 𝐽 𝑤 on a dataset

𝑥 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
, e.g. mean squared error:

𝑤⋆ = argmin
𝑤

𝐽(𝑤) = argmin
𝑤

1

𝑁

𝑖=1

𝑁

𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝑤
2

LEAST SQUARES FITTING

 Least squares polynomial fits of sin(𝑥) for 𝑑 = 1,5,9

WHY SHOULD YOU CARE?

 So far, it seems like you should always prefer the more

complex model, right?

 That’s because these toy examples assume

 We have a LOT of data

 Our data is noiseless

 Our model function behaves well between our data points

 In the real world, these assumptions are almost always false!

UNDERFITTING & OVERFITTING

 Fitting polynomials to noisy data from the orange function

UNDERFITTING & OVERFITTING

 Goal: learn a model that generalizes well to unseen test data

 Underfitting: model is too simple to learn any meaningful

patterns in the data – high training error and high test error

 Overfitting: model is so complex that it doesn’t generalize

well to unseen data because it pays too much attention to

the training data – low training error but high test error

UNDERFITTING & OVERFITTING

 Underfitting is easy to deal with – try using a more complex
model class because it is more expressive

 Complexity is roughly the “size” of the function space encoded
by a model class (the set of all functions the class can represent)

 Expressiveness is how well that model class can approximate
the functions we are interested in

 If a more complex model class overfits, can we reduce its
complexity while retaining its expressiveness?

REGULARIZATION

 If we make certain structural assumptions about the model

we want to learn, we can do just this!

 These assumptions are called regularizers

 Most commonly, we minimize an augmented loss function

ሚ𝐽 𝑤 = 𝐽 𝑤 + 𝜆𝑅 𝑤

 𝐽 𝑤 is the original loss function, 𝜆 is the regularization

strength, and 𝑅 𝑤 is a regularization term

𝐿2 WEIGHT DECAY

 In 𝐿2 weight decay regularization, 𝑅 𝑤 = 𝑤𝑇𝑤 = σ𝑘=1
𝑑 𝑤𝑘

2

 Minimizing ሚ𝐽 𝑤 = 𝐽 𝑤 + 𝜆𝑤𝑇𝑤

 Balances the goals of minimizing the loss 𝐽 𝑤 and finding a set
of weights 𝑤 that are small in magnitude

 High 𝜆 means we care more about small weights, while low 𝜆
means we care more about a low (un-augmented) loss

 Intuitively, small weights 𝑤 smoother function (no huge
oscillations like the 9th degree polynomial we overfit)

𝐿2 WEIGHT DECAY

 Regularizing a degree 9 polynomial fit with 𝐿2 weight decay

RETURNING TO NEURAL NETS

 All of the intuition we’ve built for polynomials is also valid

for neural nets!

 The complexity of a deep neural net is related (roughly) to

the number of learned parameters and the number of layers

 More complex neural nets, i.e. deeper (more layers) and/or

wider (more hidden units) are much more likely to overfit

to the training data.

RETURNING TO NEURAL NETS

 𝐿2 weight decay helps us learn smoother neural nets by

encouraging learned weights to be smaller.

 To incorporate 𝐿2 weight decay, just do stochastic gradient

descent on the augmented loss function

ሚ𝐽 𝐖 1 , … ,𝐖 𝐿 = 𝐽 𝐖 1 , … ,𝐖 𝐿 + 𝜆

𝑖,𝑗,ℓ

𝐖𝑖𝑗
ℓ 2

∇𝐖 ℓ ሚ𝐽 = ∇𝐖 ℓ 𝐽 + 2𝜆𝐖 ℓ

NEURAL NETS AND IMAGE DATA

 Let’s now consider the special case of doing machine learning

on image data with neural nets

 As we’ve studied them so far, neural nets model relationships

between every single pair of pixels

 However, in any image, the color and intensity of neighboring

pixels are much more strongly correlated than those of

faraway pixels, i.e. images have local structure

NEURAL NETS AND IMAGE DATA

 Images are also translation invariant

 A face is still a face, regardless of whether it’s in the top left of

an image or the bottom right

 Can we encode these assumptions of local structure into a

neural network as a regularizer?

 If we could, we would get models that learned something

about our data set as a collection of images.

RECAP: CONVOLUTIONS

 Consider a 𝑐-by-ℎ-by-𝑤 convolutional kernel or filter array

𝐊 and a 𝐶-by-𝐻-by-𝑊 array representing an image 𝐗

 The convolution (technically cross-correlation) 𝐙 = 𝐊⊗ 𝐗 is

𝐙 𝑖, 𝑗, 𝑘 =

ℓ=0

𝑐−1

𝑚=0

ℎ−1

𝑛=0

𝑤−1

𝐊[ℓ,𝑚, 𝑛] 𝐗 𝑖 + ℓ, 𝑗 + 𝑚, 𝑘 + 𝑛

 There are multiple ways to deal with boundary conditions;

for now, ignore any indices that are out of bounds

RECAP: CONVOLUTIONS (𝑐 = 1)

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

RECAP: CONVOLUTIONS (𝑐 = 3)

Same source as last figure

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

0
0
0

0
1
0

0
0
0

EXAMPLE CONVOLUTIONS WITH RELU

0
−1
0

−1
5
−1

0
−1
0

EXAMPLE CONVOLUTIONS WITH RELU

1

16

1
2
1

2
4
2

1
2
1

EXAMPLE CONVOLUTIONS WITH RELU

1

256

1
4
6
4
1

4
16
24
16
4

6
24
36
24
6

4
16
24
16
4

1
4
6
4
1

EXAMPLE CONVOLUTIONS WITH RELU

1
0
−1

0
0
0

−1
0
1

EXAMPLE CONVOLUTIONS WITH RELU

−1
−1
−1

−1
8
−1

−1
−1
−1

EXAMPLE CONVOLUTIONS WITH RELU

ADVANTAGES OF CONVOLUTION

 By sliding the kernel along the image, we can extract the

image’s local structure!

 Large objects (by blurring)

 Sharp edges and outlines

 Since each output pixel of the convolution is highly local, the

whole process is also translation invariant!

 Convolution is a linear operation, like matrix multiplication

CONVOLUTIONAL NEURAL NETS

 So far, the main downside of convolutions is that the

coefficients of the kernels seem like magic numbers

 But if we fit a 1D quadratic regression and get the model

𝑓 𝑥 = 0.382𝑥2 − 15.4𝑥 + 7, then aren’t the coefficients

0.382, −15.4, and 7 just magic numbers too?

 Idea: learn convolutional kernels instead of matrices

to extract something meaningful from our image data, and

then feed that into a dense neural network (with matrices)

CONVOLUTIONAL NEURAL NETS

 We can do this by creating a new kind of layer, and adding it

to the front (closer to the input) of our neural network

 In the forward pass, we convolve our input 𝐗 ℓ−1 with a

learned kernel 𝐊 ℓ , add a scalar bias 𝑏 ℓ to every element of

𝐙 ℓ , and apply a nonlinearity 𝜃 to obtain our output 𝐗 ℓ

𝐙 ℓ = 𝐊 ℓ ⊗𝐗 ℓ−1 + 𝑏 ℓ

𝐗 ℓ = 𝜃 𝐙 ℓ

CONVOLUTIONAL NEURAL NETS

 Note that we will actually be attempting to learn multiple
(specifically 𝑐ℓ) kernels of shape 𝑐ℓ−1 × ℎℓ × 𝑤ℓ per layer ℓ!

 𝑐ℓ−1 is the number of channels in input 𝐗 ℓ−1 , so convolving

any individual kernel with 𝐗 ℓ−1 will yield 1 output channel

 The output 𝐗 ℓ is the result of all 𝑐ℓ of these convolutions
stacked on top of each other (1 output channel per kernel)

 If input 𝐗 ℓ−1 has shape 𝑐ℓ−1 × 𝐻ℓ ×𝑊ℓ, then output 𝐗 ℓ

will have shape 𝑐ℓ × 𝐻ℓ − ℎℓ + 1 × (𝑊ℓ −𝑤ℓ + 1)

CONVOLUTIONAL NEURAL NETS

 We then feed the output 𝐗 ℓ into the next layer as its input

 If the next layer is a dense layer, we will re-shape 𝐗 ℓ into a

vector (instead of a multi-dimensional array)

 If the next layer is also convolutional, we can pass 𝐗 ℓ as is

 To actually learn good kernels that stage well with the layers

we feed them into, we can just use the backpropagation

algorithm to do stochastic gradient descent!

CONVOLUTIONAL BACKPROP

 Assume that we have Δ ℓ = ∇𝐗 ℓ [𝐽] (the gradient with

respect to the input of the next layer, which is also the

output of this layer)

 By the chain rule, for each kernel 𝐊 ℓ at this layer ℓ,

𝜕𝐽

𝜕𝐊𝑖𝑗𝑘
ℓ
=

𝑎=1

𝑐ℓ

𝑏=1

𝑤ℓ

𝑐=1

ℎℓ
𝜕𝐽

𝜕𝐙𝑎𝑏𝑐
ℓ

𝜕𝐙𝑎𝑏𝑐
ℓ

𝜕𝐊𝑖𝑗𝑘
ℓ

CONVOLUTIONAL BACKPROP

 By the chain rule (again)

𝜕𝐽

𝜕𝐙𝑎𝑏𝑐
ℓ

=
𝜕𝐽

𝜕𝐗𝑎𝑏𝑐
ℓ

𝜕𝐗𝑎𝑏𝑐
ℓ

𝜕𝐙𝑎𝑏𝑐
ℓ

= Δ𝑎𝑏𝑐
ℓ
𝜃′ 𝐙𝑎𝑏𝑐

ℓ

 This gives us ∇𝐙 ℓ 𝐽 , the gradient with respect to the output

of the convolution

 We can find this with cudnnActivationBackward()

(see Lecture 15) ☺

CONVOLUTIONAL BACKPROP

 If you give cuDNN the

 Gradient with respect to the convolved output ∇𝐙 ℓ 𝐽

 Input to the convolution 𝐗 ℓ−1

 cuDNN can compute each ∇𝐊 ℓ 𝐽 , the gradient of the loss

with respect to each kernel 𝐊 ℓ (Lecture 17) ☺

 With the ∇𝐊 ℓ 𝐽 ’s computed, we can do gradient descent!

CONVOLUTIONAL BACKPROP

 All that remains is for us to find the gradient with respect to

the input to this layer Δ ℓ−1 = ∇𝐗 ℓ−1 𝐽

 This is also the gradient with respect to the output of the next

layer, and will be used to continue doing backpropagation.

 Again, cuDNN has a function for it (Lecture 17)

 You need to provide it the kernels 𝐊 ℓ and the gradient with

respect to the output Δ ℓ = ∇𝐗 ℓ 𝐽 (like a dense neural net)

POOLING LAYERS

 After each convolutional layer, it is common to add a pooling

layer to down-sample the input

 Most commonly, one would take every non-overlapping 𝑛 × 𝑛
window of a convolved output, and replace each window with

a single pixel whose intensity is either

 The maximum intensity found in that 𝑛 × 𝑛 window

 The mean intensity of the pixels in that 𝑛 × 𝑛 window

EXAMPLE OF 2 × 2 POOLING

http://ieeexplore.ieee.org/document/7590035/all-figures

http://ieeexplore.ieee.org/document/7590035/all-figures

POOLING LAYERS

 Motivation: convolution compresses the amount of

information in the image spatially

 Blur nearby pixels are more similar

 Edge “important” pixels are brighter than their surroundings

 Why not use that compression to reduce dimensionality?

 Forward and backwards propagation for pooling layers are

fairly straightforward, and cuDNN can do both (Lecture 17)

WHY BOTHER?

 Consider the MNIST dataset of handwritten digits

 Each image is 28 × 28 pixels 784 input dimensions, and it

can be one of 10 output classes

 If we want to train even a linear classifier (not even a neural

net), we would need 784 + 1 × 10 = 7850 parameters

 We’re also modeling relationships between every pair of pixels;

most of the relationships we learn probably aren’t meaningful

CONV NETS ARE BETTER

 Let’s instead consider the following convolutional net:

 Layer 1: Twenty (1 × 5 × 5) kernels

 Layer 2: 2 × 2 pooling

 Layer 3: Five (20 × 3 × 3) kernels

 Layer 4: 2 × 2 pooling

 Layer 5: Dense layer with 50 hidden units

 Layer 6: Dense layer with 10 output units

CONV NETS ARE BETTER

 Input shape (1 × 28 × 28) (MNIST image)

 Twenty (1 × 5 × 5) kernels

 20 × 1 × 5 × 5 + 1 = 520 parameters

 Output shape (20 × 24 × 24)

 2 × 2 pooling

 Output shape (20 × 12 × 12)

CONV NETS ARE BETTER

 Input shape (20 × 12 × 12) (conv 1 + pool 1)

 Five (20 × 3 × 3) kernels

 5 × 20 × 3 × 3 + 1 = 905 parameters

 Output shape (5 × 10 × 10)

 2 × 2 pooling

 Output shape (5 × 5 × 5)

CONV NETS ARE BETTER

 Input shape (5 × 5 × 5) (conv 2 + pool 2)

 Flatten into a 125-dimensional vector

 Dense layer with 50 hidden units

 50 × 125 + 1 = 6300 parameters

 Output is a 50-dimensional vector

 Dense layer with 10 output units

 10 × 50 + 1 = 510 parameters

CONV NETS ARE BETTER

 This gives us a total of 520 + 905 + 6300 + 510 = 8235
parameters, similar to the vanilla linear classifier’s 7850

 However, with the same number of parameters, this model

 Learns something more meaningful about image structure

 Achieves a significantly better accuracy on unseen data

 We’ve effectively regularized the neural net to perform well

on image data! HW6: implement it and see for yourself.

