CS 179: LECTURE 14

NEURAL NETWORKS AND
BACKPROPAGATION

LAST TIME

Intro to machine learning
Linear regression
Gradient descent

Linear classification = minimize cross-entropy

TODAY

® Derivation of gradient descent for linear classifier
= Using linear classifiers to build up neural networks

" Gradient descent for neural networks (backpropagation)

REFRESHER ON THE TASK

" We are given {(x(l),y(l)), . (x(N),y(N))} as training data

= We want to classify each input x into one of m classes

T

s Each x™ is a d-dimensional column vector (XF), e Xc(ln))
(n) m\"

= Each y(n) is 2 m-dimensional column vector (y1) Ym)

- ylgn) = 1iff Class(x(”)) = k; otherwise, ylgn) =0

REFRESHER ON THE TASK

]R(d+ 1)Xm

® Our model is parametrized by a matrix W €

= Given a d-dimensional input vector x = (x, ...,x4)! and
denoting x’ = (1, x4, ..., x4)", we compute an m-dimensional
output vector z = WTx’

" We then classify x as the class corresponding to the index of
z with the largest value

LINEAR CLASSIFIER GRADIENT

= We will be going through some extra steps to derive the
gradient of the linear classifier

= The reason will become clear when we start talking about
neural networks

LINEAR CLASSIFIER GRADIENT

® Define intermediate variables

z=WTx'

exp(z)

;P =1 Pm)’
Z;nzl EXp(Zj) p P1 Pm

Pr =

] =— z Vi In(py)
k=1

LINEAR CLASSIFIER GRADIENT

= Simplify derivatives using the multivariate chain rule and the
fact that Zj = Z?:O Wl] Xi (Wlth Xo = 1)

o) 0 9z d)
HWU B 1aZk 6WU — M aZ]

k=

m
a Vi 0p;

aZj B . Di aZ]

LINEAR CLASSIFIER GRADIENT

= Compute the gradient of the softmax function

opj _(pi(1—pp) i=]
dz; | —Pi'Pj otherwise

= Substituting this into the previous gradient, we can show

LINEAR CLASSIFIER GRADIENT

® Then, the gradient of the linear classifier’s loss function wrt
Its parameters is

0]] 0z

GWLJ B Bzi aWL] B xl(p] - y])

Vwll=x"(p —y)"

= More linear algebra! Again, GPU’s are great for this stuff ©

STOCHASTIC GRADIENT DESCENT

" While W has not converged

= For each data point (x,y) in the data set

= Compute z = Wx'

_ exp(2)
[l COmPUte P = 27121:1 exp(zg)

= Update W W —nx'(p —y)T

= Alternatively, update per mini-batch instead of per data point

.

LIMITATIONS OF LINEAR MODELS

" Most real-world data is not separable by a linear decision
boundary

= Simplest example: XOR gate

® What if we could combine the results of multiple linear
classifiers!?

= Combine two OR gates with an AND gate to get a XOR gate

Presenter
Presentation Notes
Draw XOR gate and AND/OR combinations on board

ANOTHER VIEW OF LINEAR MODELS

= Combine all the components x; of our input x in different
ways in order to get different outputs z;

® Push z through some nonlinear function 8 (e.g. softmax)

f(x)

NEURAL NETWORKS

= What if we used each 6(z;) as the input to another classifier?

" This lets us compose multiple linear decision boundaries!

@: xil)
) N N
/ . . /

.

NEURAL NETWORKS

"= Why the nonlinearity 6!

. W' (W(l)Tx') is still a linear function x

m W(Z)TH (W(l)Tx’) is no longer a linear function in x

" 0 makes the model more expressive

= The nonlinearity 0 is also known as an activation function

Presenter
Presentation Notes
ReLU = rectified linear units, mention in slide

.

EXAMPLES OF ACTIVATIONS

= A(z) = max(0,z) (ReLU activation) is most common

eX—e™X

eX+e™X

= f(z) =

(tanh function) is occasionally used as well

Presenter
Presentation Notes
ReLU = rectified linear units, mention in slide
Draw on board

UNIVERSAL APPROXIMATOR THM

= [t is possible to show that if your neural network is big
enough, it can approximate any continuous function

arbitrarily well! (Hornik 1991)

= This is why neural nets are important

NEURAL NETWORKS

= But why stop at just 2 layers of linear function/nonlinearity?

= We can have arbitrarily many L layers!

= x%=1 is the input to layer £ (x(?) is the data given)
= x®) =g® (W({))Tx(f_l)’) is the output of layer £

= The loss function is applied to x(L) = §()(z() (the final

output), though it is sometimes easier to apply it to 7 (L)
directly (e.g. softmax cross-entropy loss w/ linear classifier)

BACKPROPAGATION

= So how do we take the gradient of a neural network with

respect to every parameter matrix w L wdy

:) _wol ., a-1) 7 _ :
s Define z(8) = W& x(U-1D" 3pd §@) = V_w[/]. By chain rule,

5 &1 9z 5
J _] 0z _ (1) J _ (-1)
@ E, @ a0 N @ =% 9
oW 979 oW 0

/ T
Vo @ []] = xE=1)" 5(£)

BACKPROPAGATION

= To find §) = V_w /], apply the chain rule again:

(£-1)
o 9] Ox 0] g(g_l)’(z(f—l))

l

aZi(f—1) o ax_(£—1) 07 (£—1) o axi(£—1)

dy (i’) dy
o __ E o__%% E 50w = (WOs®)
(£-1) (£) (1? 1)
0x; = 6Zj dx; =

L

BACKPROPAGATION

= We know x(? and the current values of WD, ... W)

= |f we do a forward pass through the neural network, we will
compute every xD, ..., x) and zD, ..., z(L)

= From the linear classifier, we know that §&) = x (L) — y
= gD’ (Zi({)_l)) is easy to compute

= We have all we need to do stochastic gradient descent!

BACKPROPAGATION

= Fix a learning rate 1 and initialize W, ..., W) randomly

= For each data point (x(?),y) in the data set
= Compute each 78 = W(‘?)Tx(f_l), and x*) = 9(®) (Z({)))
= |nitialize § = x(I) — y
= For each ¢ counting down from L to 1
= Calculate at®) = V_ e-nlJ] = W)
m Set 61-({)_1) = ai({))e({)_l)' (Zi({)_l)) foreachi =1, ..,dy,_4

= Update W) « W) — (x(f—l)g(f)T)

BACKPROPAGATION

" Forward pass

= We are given x(®

= x**+D depends on z¢*V| which depends on x
= Backward pass

= We have §") from the forward pass

= §¢-1) depends on 6§

= We need §) because Vi [/] depends on 5

BACKPROPAGATION

= This is stochastic gradient descent for a neural network!

" |In Homework #5, you will:
= |mplement a linear classifier
= Extend it to a 2-layer neural network

= Before discussing implementation details, let’s talk about
parallelizing the backpropagation algorithm

PARALLELIZATION

= By its nature, the backpropagation algorithm seems
fundamentally sequential

= However, each sequential step is a linear algebra operation
= Parallelize with cuBLAS

= Minibatch stochastic gradient descent
= Compute the gradient for each data point in the minibatch

® Use a parallel reduction to take the average at the end

USING MINIBATCHES

= Consider a minibatch size of k

= Construct a d, X k matrix X®) where column i is the x®
corresponding to data point [in the mini-batch

= Construct a d, X k matrix A®) where column i is the §®
corresponding to data point i in the mini-batch

= Define Z®) = w®' x¢-1’

= After fixing a learning rate n and initializing W(l), . w &)
randomly, we have the following algorithm:

USING MINIBATCHES

= For each minibatch (X(®,Y) of size k in the data set
= Compute each Z¥) = W(f)TX(‘D_l) and X = 9(‘0)(Z({)))
= Initialize AW = X —y
" For each ¢ counting down from L to 1

= Calculate A®Y) = Vye-1) [J] = WO AE)

= Set Ag_l) = A(i?H(’?_l), (Zl.(f_l)) foralli=1,..,dy_qyandj =1, ..,k

= Update W « W) — %,7 (Xw—l)’ A(N)

IMPLEMENTATION

® You can do all the matrix multiplications using cuBLAS

= The only new computation is Agf_l) = Ag?e({’—l)' (Zi(]{.)_l))

= This differentiation and pointwise multiplication step (and
much more) is done for you for free by another CUDA
package called cuDNN (Deep Neural Nets)

= Next time, you will learn the basics of cuDNN

	CS 179: Lecture 14
	Last Time
	Today
	Refresher on The task
	Refresher on The task
	Linear Classifier Gradient
	Linear CLASSIFIER Gradient
	Linear CLASSIFIER Gradient
	Linear CLASSIFIER Gradient
	Linear CLASSIFIER Gradient
	Stochastic Gradient Descent
	Limitations of Linear Models
	Another View of Linear Models
	Neural Networks
	Neural Networks
	Examples of activations
	Universal Approximator Thm
	Neural Networks
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Parallelization
	Using Minibatches
	Using Minibatches
	Implementation

