CS 179: LECTURE 14

NEURAL NETWORKS AND
BACKPROPAGATION




LAST TIME

Intro to machine learning
Linear regression
Gradient descent

Linear classification = minimize cross-entropy



TODAY

® Derivation of gradient descent for linear classifier
= Using linear classifiers to build up neural networks

" Gradient descent for neural networks (backpropagation)



REFRESHER ON THE TASK

" We are given {(x(l),y(l)), . (x(N),y(N))} as training data

= We want to classify each input x into one of m classes

T

s Each x™ is a d-dimensional column vector (XF), e Xc(ln))
(n) m\"

= Each y(n) is 2 m-dimensional column vector (y1 ) Ym )

- ylgn) = 1iff Class(x(”)) = k; otherwise, ylgn) =0



REFRESHER ON THE TASK

]R(d+ 1)Xm

® Our model is parametrized by a matrix W €

= Given a d-dimensional input vector x = (x, ...,x4)! and
denoting x’ = (1, x4, ..., x4)", we compute an m-dimensional
output vector z = WTx’

" We then classify x as the class corresponding to the index of
z with the largest value



LINEAR CLASSIFIER GRADIENT

= We will be going through some extra steps to derive the
gradient of the linear classifier

= The reason will become clear when we start talking about
neural networks



LINEAR CLASSIFIER GRADIENT

® Define intermediate variables

z=WTx'

exp(z)

;P =1 Pm)’
Z;nzl EXp(Zj) p P1 Pm

Pr =

] =— z Vi In(py)
k=1



LINEAR CLASSIFIER GRADIENT

= Simplify derivatives using the multivariate chain rule and the
fact that Zj = Z?:O Wl] Xi (Wlth Xo = 1)

o) 0 9z d)
HWU B 1aZk 6WU — M aZ]

k=

m
a Vi 0p;

aZj B . Di aZ]




LINEAR CLASSIFIER GRADIENT

= Compute the gradient of the softmax function

opj _(pi(1—pp)  i=]
dz; | —Pi'Pj  otherwise

= Substituting this into the previous gradient, we can show




LINEAR CLASSIFIER GRADIENT

® Then, the gradient of the linear classifier’s loss function wrt
Its parameters is

0] ] 0z

GWLJ B Bzi aWL] B xl(p] - y])

Vwll=x"(p —y)"

= More linear algebra! Again, GPU’s are great for this stuff ©



STOCHASTIC GRADIENT DESCENT

" While W has not converged

= For each data point (x,y) in the data set

= Compute z = Wx'

_ exp(2)
[l COmPUte P = 27121:1 exp(zg)

= Update W W —nx'(p —y)T

= Alternatively, update per mini-batch instead of per data point



.

LIMITATIONS OF LINEAR MODELS

" Most real-world data is not separable by a linear decision
boundary

= Simplest example: XOR gate

® What if we could combine the results of multiple linear
classifiers!?

= Combine two OR gates with an AND gate to get a XOR gate


Presenter
Presentation Notes
Draw XOR gate and AND/OR combinations on board


ANOTHER VIEW OF LINEAR MODELS

= Combine all the components x; of our input x in different
ways in order to get different outputs z;

® Push z through some nonlinear function 8 (e.g. softmax)

f(x)




NEURAL NETWORKS

= What if we used each 6(z;) as the input to another classifier?

" This lets us compose multiple linear decision boundaries!

@: xil)
) N N
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.

NEURAL NETWORKS

"= Why the nonlinearity 6!

. W' (W(l)Tx') is still a linear function x

m W(Z)TH (W(l)Tx’) is no longer a linear function in x

" 0 makes the model more expressive

= The nonlinearity 0 is also known as an activation function



Presenter
Presentation Notes
ReLU = rectified linear units, mention in slide


.

EXAMPLES OF ACTIVATIONS

= A(z) = max(0,z) (ReLU activation) is most common

eX—e™X

eX+e™X

= f(z) =

(tanh function) is occasionally used as well



Presenter
Presentation Notes
ReLU = rectified linear units, mention in slide
Draw on board


UNIVERSAL APPROXIMATOR THM

= [t is possible to show that if your neural network is big
enough, it can approximate any continuous function

arbitrarily well! (Hornik 1991)

= This is why neural nets are important



NEURAL NETWORKS

= But why stop at just 2 layers of linear function/nonlinearity?

= We can have arbitrarily many L layers!

= x%=1 is the input to layer £ (x(?) is the data given)
= x®) =g® (W({))Tx(f_l)’) is the output of layer £

= The loss function is applied to x(L) = §()(z() (the final

output), though it is sometimes easier to apply it to 7 (L)
directly (e.g. softmax cross-entropy loss w/ linear classifier)



BACKPROPAGATION

= So how do we take the gradient of a neural network with

respect to every parameter matrix w L wdy

: ) _wol ., a-1) 7 _ :
s Define z(8) = W& x(U-1D" 3pd §@) = V_w[/]. By chain rule,

5 &1 9z 5
J _ ] 0z _ (1) J _ (-1 )
@ E, @ a0 N @ =% 9
oW 979 oW 0

/ T
Vo @ []] = xE=1)" 5(£)



BACKPROPAGATION

= To find §) = V_w /], apply the chain rule again:

(£-1)
o 9] Ox 0] g(g_l)’(z(f—l))

l

aZi(f—1) o ax_(£—1) 07 (£—1) o axi(£—1)

dy (i’) dy
o __ E o__%% E 50w = (WOs®)
(£-1) (£) (1? 1)
0x; = 6Zj dx; =

L




BACKPROPAGATION

= We know x(? and the current values of WD, ... W)

= |f we do a forward pass through the neural network, we will
compute every xD, ..., x) and zD, ..., z(L)

= From the linear classifier, we know that §&) = x (L) — y
= gD’ (Zi({)_l)) is easy to compute

= We have all we need to do stochastic gradient descent!



BACKPROPAGATION

= Fix a learning rate 1 and initialize W, ..., W) randomly

= For each data point (x(?),y) in the data set
= Compute each 78 = W(‘?)Tx(f_l), and x*) = 9(®) (Z({)))
= |nitialize § = x(I) — y
= For each ¢ counting down from L to 1
= Calculate at®) = V_ e-nlJ] = W)
m Set 61-({)_1) = ai({))e({)_l)' (Zi({)_l)) foreachi =1, ..,dy,_4

= Update W) « W) — (x(f—l)g(f)T)



BACKPROPAGATION

" Forward pass

= We are given x(®

= x**+D depends on z¢*V| which depends on x
= Backward pass

= We have §") from the forward pass

= §¢-1) depends on 6§

= We need §) because Vi [/] depends on 5



BACKPROPAGATION

= This is stochastic gradient descent for a neural network!

" |In Homework #5, you will:
= |mplement a linear classifier
= Extend it to a 2-layer neural network

= Before discussing implementation details, let’s talk about
parallelizing the backpropagation algorithm



PARALLELIZATION

= By its nature, the backpropagation algorithm seems
fundamentally sequential

= However, each sequential step is a linear algebra operation
= Parallelize with cuBLAS

= Minibatch stochastic gradient descent
= Compute the gradient for each data point in the minibatch

® Use a parallel reduction to take the average at the end



USING MINIBATCHES

= Consider a minibatch size of k

= Construct a d, X k matrix X®) where column i is the x®
corresponding to data point [ in the mini-batch

= Construct a d, X k matrix A®) where column i is the §®
corresponding to data point i in the mini-batch

= Define Z®) = w®' x¢-1’

= After fixing a learning rate n and initializing W(l), . w &)
randomly, we have the following algorithm:



USING MINIBATCHES

= For each minibatch (X(®,Y) of size k in the data set
= Compute each Z¥) = W(f)TX(‘D_l) and X = 9(‘0)(Z({)))
= Initialize AW = X —y
" For each ¢ counting down from L to 1

= Calculate A®Y) = Vye-1) [J] = WO AE)

= Set Ag_l) = A(i?H(’?_l), (Zl.(f_l)) foralli=1,..,dy_qyandj =1, ..,k

= Update W « W) — %,7 (Xw—l)’ A(N)



IMPLEMENTATION

® You can do all the matrix multiplications using cuBLAS

= The only new computation is Agf_l) = Ag?e({’—l)' (Zi(]{.)_l))

= This differentiation and pointwise multiplication step (and
much more) is done for you for free by another CUDA
package called cuDNN (Deep Neural Nets)

= Next time, you will learn the basics of cuDNN
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