CS 179: LECTURE 13

INTRO TO MACHINE LEARNING

GOALS OF WEEKS 5-6

- What is machine learning (ML) and when is it useful?
- Intro to major techniques and applications
 - Give examples
- How can CUDA help?
- Departure from usual pattern: we will give the application first, and the CUDA later

HOW TO FOLLOW THIS LECTURE

- This lecture and the next one will have a lot of math!
- Don't worry about keeping up with the derivations 100%
 - Important equations will be boxed
 - Key terms to understand: loss/objective function, linear regression, gradient descent, linear classifier
- The theory lectures will probably be boring for those of you who have done some machine learning (CSI56/155) already

WHAT IS ML GOOD FOR?

Handwriting recognition 5041921314

Spam detection

Amazon Update <AmazonUpdate @efficaciouscrbays.xyz

The Amazon Marketplace

------SHOPPER/MEMBER: 4726 ------DATE-OF-NOTICE: 12/22/2015

Hello <u>Shopper</u> <u>Ognail com</u>! To show you how much we truly value your years of business with us and to celebrate the continued success of our Prime membership program, we're rewarding you with-\$100 in shopping points that can be used on any item on our online shopping site! (this includes any marketplace vendors)

In order to use this-\$100 reward, simply go below to get your-coupon-card and then just use it during checkout on your next purchase. That's all there is to it!

Please visit-here now to get your reward

***DON'T WAITI The Link Above Expires on 12/281

WHAT IS ML GOOD FOR?

- Teaching a robot how to do a backflip
 - https://youtu.be/fRj34o4hN4l
- Predicting the performance of a stock portfolio
- The list goes on!

WHAT IS ML?

- What do these problems have in common?
 - Some pattern we want to learn
 - No good closed-form model for it
 - LOTS of data
- What can we do?
 - Use <u>data</u> to learn a <u>statistical model</u> for the <u>pattern</u> we are interested in

DATA REPRESENTATION

- One data point is a vector x in \mathbb{R}^d
 - A 30 × 30 pixel image is a 900-dimensional vector (one component per pixel intensity)
 - If we are classifying an email as spam or not spam, set d = number of words in dictionary
 - Count the number of times n_i that a word i appears in an email and set $x_i = n_i$
- The possibilities are endless ③

WHAT ARE WE TRYING TO DO?

- Given an input $x \in \mathbb{R}^d$, produce an output y
- What is y?
 - Could be a real number, e.g. predicted return of a given stock portfolio
 - Could be 0 or 1, e.g. spam or not spam
 - Could be a vector in \mathbb{R}^m , e.g. telling a robot how to move each of its m joints
- Just like x, y can be almost anything ③

EXAMPLE OF (x, y) PAIRS

NOTATION

$$x' = \begin{pmatrix} 1 \\ x \end{pmatrix} \in \mathbb{R}^{d+1}$$

$$\mathbf{X} = \left(x^{(1)}, \dots, x^{(N)}\right) \in \mathbb{R}^{d \times N}$$
$$\mathbf{X}' = \left(x^{(1)'}, \dots, x^{(N)'}\right) \in \mathbb{R}^{(d+1) \times N}$$
$$\mathbf{Y} = \left(y^{(1)}, \dots, y^{(N)}\right)^T \in \mathbb{R}^{N \times m}$$
$$\mathbb{I}[p] = \begin{cases} 1 & p \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

STATISTICAL MODELS

- Given (X, Y) (N pairs of (x⁽ⁱ⁾, y⁽ⁱ⁾) data), how do we accurately predict an output y given an input x?
- One solution: a model f(x) parametrized by a vector (or matrix) w, denoted as f(x; w)
 - The task is finding a set of **<u>optimal</u>** parameters *w*

FITTING A MODEL

- So what does optimal mean?
 - Under some measure of closeness, we want f(x; w) to be as close as possible to the true solution y for any input x
- This measure of closeness is called a <u>loss</u> <u>function</u> or <u>objective function</u> and is denoted J(w; X, Y) -- it depends on our data set (X, Y)!
- To fit a model, we try to find parameters w* that minimize J(w; X, Y), i.e. an <u>optimal</u> w

FITTING A MODEL

- What characterizes a good loss function?
 - Represents the magnitude of our model's error on the data we are given
 - Penalizes large errors more than small ones
 - Continuous and differentiable in w
 - Bonus points if it is also *convex* in *w*
- Continuity, differentiability, and convexity are to make minimization easier

LINEAR REGRESSION

•
$$f(x;w) = w_0 + \sum_{i=1}^d w_i x_i = w^T x'$$

• Below: $d = 1. w^T x'$ is graphed.

LINEAR REGRESSION

- What should we use as a loss function?
 - Each $y^{(i)}$ is a real number
 - Mean-squared error is a good choice ③

•
$$J(w; \mathbf{X}, \mathbf{Y}) = \frac{1}{N} \sum_{i=1}^{N} [f(x^{(i)}; w) - y^{(i)}]^2$$

= $\frac{1}{N} \sum_{i=1}^{N} [w^T x^{(i)'} - y^{(i)}]^2$
= $\frac{1}{N} (w^T \mathbf{X}' - \mathbf{Y})^T (w^T \mathbf{X}' - \mathbf{Y})^T$

• How do we find $w^* = \underset{w \in \mathbb{R}^{d+1}}{\operatorname{argmin}} J(w; \mathbf{X}, \mathbf{Y})$?

- A function's gradient points in the direction of steepest ascent, and its negative in the direction of steepest descent
- Following the gradient downhill will cause us to converge to a local minimum!

- Fix some constant learning rate η (0.03 is usually a good place to start)
- Initialize w randomly
 - Typically select each component of w independently from some standard distribution (uniform, normal, etc.)
- While w is still changing (hasn't converged)

• Update
$$w \leftarrow w - \eta \nabla J(w; \mathbf{X}, \mathbf{Y})$$

- For mean squared error loss in linear regression, $\nabla J(w; \mathbf{X}, \mathbf{Y}) = \frac{2}{N} \left(w^T \mathbf{X}' \mathbf{X}'^T - \mathbf{X}' \mathbf{Y} \right)$
- This is just linear algebra! GPUs are good at this kind of thing ③
- Why do we care?
 - f(x; w*) = w*^Tx' is the model with the lowest possible
 mean-squared error on our training dataset (X, Y)!

STOCHASTIC GRADIENT DESCENT

- The previous algorithm computes the gradient over the entire data set before stepping.
 - Called batch gradient descent
- What if we just picked a single data point (x⁽ⁱ⁾, y⁽ⁱ⁾) at random, computed the gradient for that point, and updated the parameters?
 - Called stochastic gradient descent

STOCHASTIC GRADIENT DESCENT

- Advantages of SGD
 - Easier to implement for large datasets
 - Works better for non-convex loss functions
 - Sometimes faster
- Often use SGD on a "mini-batch" of k examples rather than just one at a time
 - Allows higher throughput and more parallelization

BINARY LINEAR CLASSIFICATION

- $f(x;w) = \mathbb{I}[w^T x' > 0]$
- Divides \mathbb{R}^d into two <u>half-spaces</u>
 - $w^T x' = 0$ is a hyperplane
 - A line in 2D, a plane in 3D, and so on
 - Known as the <u>decision boundary</u>
 - Everything on one side of the hyperplane is class 0 and everything on the other side is class 1

BINARY LINEAR CLASSIFICATION

Below: d = 2. Black line is the decision boundary $w^T x' = 0$

- We want to classify x into one of m classes
- For each input x, y is a vector in \mathbb{R}^m with $y_k = 1$ if class(x) = kand $y_j = 0$ otherwise (i.e. $y_k = \mathbb{I}[class(x) = k]$)
 - Known as a <u>one-hot vector</u>
- Our model $f(x; \mathbf{W})$ is parametrized by a $m \times (d + 1)$ matrix $\mathbf{W} = (w^{(1)}, \dots, w^{(m)})$
- The model returns an *m*-dimensional vector (like *y*) with $f_k(x; \mathbf{W}) = \mathbb{I}\left[\arg\max_i w^{(i)^T} x' = k\right]$

•
$$w^{(j)^T}x' = w^{(k)^T}x'$$
 describes the intersection of 2
hyperplanes in \mathbb{R}^{d+1} (where $x \in \mathbb{R}^d$)

Divides \mathbb{R}^d into half-spaces; $w^{(j)^T}x' > w^{(k)^T}x'$ on one side, vice versa on the other side.

If
$$w^{(j)^T}x' = w^{(k)^T}x' = \max_i w^{(i)^T}x'$$
, this is a decision
boundary!

Illustrative figures follow

• Below:
$$d = 1, m = 4$$
. max $w^{(i)^T} x'$ is graphed.

Multi-Class Linear Classification in 1D

Below: d = 2, m = 3. Lines are decision boundaries $w^{(j)^T} x = w^{(k)^T} x = \max_i w^{(i)^T} x$

For
$$m = 2$$
 (binary classification), we get the scalar version by setting $w = w^{(1)} - w^{(0)}$

•
$$f_1(x; \mathbf{W}) = \mathbb{I}\left[\arg\max_i w^{(i)^T} x' = 1\right]$$

= $\mathbb{I}\left[w^{(1)^T} x' > w^{(0)^T} x'\right]$
= $\mathbb{I}\left[\left(w^{(1)} - w^{(0)}\right)^T x' > 0\right]$

FITTING A LINEAR CLASSIFIER

- $f(x;w) = \mathbb{I}[w^T x' > 0]$
- How do we turn this into something continuous and differentiable?
- We really want to replace the indicator function I with a smooth function indicating the probability of whether y is 0 or 1, based on the value of w^Tx'

- Interpreting $w^T x'$
 - $w^T x'$ large and positive
 - $\mathbb{P}[y=0] \ll \mathbb{P}[y=1]$
 - $w^T x'$ large and negative
 - $\mathbb{P}[y=0] \gg \mathbb{P}[y=1]$
 - $|w^T x'|$ small

•
$$\mathbb{P}[y=0] \approx \mathbb{P}[y=1]$$

We therefore use the probability functions

•
$$p_0(x;w) = \mathbb{P}[y=0] = \frac{1}{1 + \exp(w^T x')}$$

•
$$p_1(x;w) = \mathbb{P}[y=1] = \frac{\exp(w^T x')}{1 + \exp(w^T x')}$$

• If $w = w^{(1)} - w^{(0)}$ as before, this is just

$$p_k(x;w) = \mathbb{P}[y=k] = \frac{\exp(w^{(k)^T}x')}{\exp(w^{(0)^T}x') + \exp(w^{(1)^T}x')}$$

• In the more general m-class case, we have

$$p_k(x; \mathbf{W}) = \mathbb{P}[y_k = 1] = \frac{\exp\left(w^{(k)^T} x'\right)}{\sum_{i=1}^m \exp\left(w^{(i)^T} x'\right)}$$

This is called the <u>softmax activation</u> and will be used to define our loss function

THE CROSS-ENTROPY LOSS

- We want to heavily penalize cases where $y_k = 1$ with $p_k(x; \mathbf{W}) \ll 1$
- This leads us to define the **<u>cross-entropy loss</u>** as follows:

$$J(\mathbf{W}; \mathbf{X}, \mathbf{Y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{m} y_k^{(i)} \ln\left(p_k(x^{(i)}; \mathbf{W})\right)$$

MINIMIZING CROSS-ENTROPY

- As with mean-squared error, the cross-entropy loss is convex and differentiable ⁽²⁾
- That means that we can use gradient descent to converge to a global minimum!
- This global minimum defines the <u>best possible</u> linear classifier with respect to the cross-entropy loss and the data set given

SUMMARY

- Basic process of constructing a machine learning model
- Choose an analytically well-behaved loss function that represents some notion of error for your task
- Use gradient descent to choose model parameters that minimize that loss function for your data set
- Examples: linear regression and mean squared error, linear classification and cross-entropy

NEXTTIME

- Gradient of the cross-entropy loss
- Neural networks
- Backpropagation algorithm for gradient descent