
CS 179: LECTURE 13

INTRO TO MACHINE LEARNING

GOALS OF WEEKS 5-6

 What is machine learning (ML) and when is it useful?

 Intro to major techniques and applications

 Give examples

 How can CUDA help?

 Departure from usual pattern: we will give the application

first, and the CUDA later

HOW TO FOLLOW THIS LECTURE

 This lecture and the next one will have a lot of math!

 Don’t worry about keeping up with the derivations 100%

 Important equations will be boxed

 Key terms to understand: loss/objective function, linear

regression, gradient descent, linear classifier

 The theory lectures will probably be boring for those of you

who have done some machine learning (CS156/155) already

WHAT IS ML GOOD FOR?

 Handwriting recognition

 Spam detection

WHAT IS ML GOOD FOR?

 Teaching a robot how to do a backflip

 https://youtu.be/fRj34o4hN4I

 Predicting the performance of a stock portfolio

 The list goes on!

https://youtu.be/fRj34o4hN4I

WHAT IS ML?

 What do these problems have in common?

 Some pattern we want to learn

 No good closed-form model for it

 LOTS of data

 What can we do?

 Use data to learn a statistical model for the
pattern we are interested in

DATA REPRESENTATION

 One data point is a vector 𝑥 in ℝ𝑑

 A 30 × 30 pixel image is a 900-dimensional vector

(one component per pixel intensity)

 If we are classifying an email as spam or not spam,

set 𝑑 = number of words in dictionary

 Count the number of times 𝑛𝑖 that a word 𝑖
appears in an email and set 𝑥𝑖 = 𝑛𝑖

 The possibilities are endless ☺

WHAT ARE WE TRYING TO DO?

 Given an input 𝑥 ∈ ℝ𝑑, produce an output 𝑦

 What is 𝑦?

 Could be a real number, e.g. predicted return of a

given stock portfolio

 Could be 0 or 1, e.g. spam or not spam

 Could be a vector in ℝ𝑚, e.g. telling a robot how

to move each of its 𝑚 joints

 Just like 𝑥, 𝑦 can be almost anything ☺

EXAMPLE OF (𝑥, 𝑦) PAIRS

 ,

0
0
0
0
0
1
0
0
0
0

, ,

1
0
0
0
0
0
0
0
0
0

, ,

0
1
0
0
0
0
0
0
0
0

, ,

0
0
0
1
0
0
0
0
0
0

, etc.

NOTATION

𝑥′ =
1

𝑥
∈ ℝ𝑑+1

𝐗 = 𝑥 1 , … , 𝑥 𝑁 ∈ ℝ𝑑×𝑁

𝐗′ = 𝑥 1 ′
, … , 𝑥 𝑁 ′

∈ ℝ 𝑑+1 ×𝑁

𝐘 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁×𝑚

𝕀 𝑝 = ቊ
1
0

𝑝 is true
otherwise

STATISTICAL MODELS

 Given (𝐗, 𝐘) (𝑁 pairs of 𝑥 𝑖 , 𝑦 𝑖 data), how do

we accurately predict an output 𝑦 given an input

𝑥?

 One solution: a model 𝑓(𝑥) parametrized by a

vector (or matrix) 𝑤, denoted as 𝑓 𝑥;𝑤

 The task is finding a set of optimal parameters 𝑤

FITTING A MODEL

 So what does optimal mean?

 Under some measure of closeness, we want
𝑓(𝑥;𝑤) to be as close as possible to the true
solution 𝑦 for any input 𝑥

 This measure of closeness is called a loss
function or objective function and is denoted
𝐽 𝑤; 𝐗, 𝐘 -- it depends on our data set (𝐗, 𝐘)!

 To fit a model, we try to find parameters 𝑤∗ that
minimize 𝐽(𝑤; 𝐗, 𝐘), i.e. an optimal 𝑤

FITTING A MODEL

 What characterizes a good loss function?

 Represents the magnitude of our model’s error on

the data we are given

 Penalizes large errors more than small ones

 Continuous and differentiable in 𝑤

 Bonus points if it is also convex in 𝑤

 Continuity, differentiability, and convexity are to

make minimization easier

LINEAR REGRESSION

 𝑓 𝑥;𝑤 = 𝑤0 + σ𝑖=1
𝑑 𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥′

 Below: 𝑑 = 1. 𝑤𝑇𝑥′ is graphed.

LINEAR REGRESSION

 What should we use as a loss function?

 Each 𝑦 𝑖 is a real number

 Mean-squared error is a good choice ☺

 𝐽 𝑤; 𝐗, 𝐘 =
1

𝑁
σ𝑖=1
𝑁 𝑓 𝑥 𝑖 ; 𝑤 − 𝑦 𝑖 2

=
1

𝑁
σ𝑖=1
𝑁 𝑤𝑇𝑥 𝑖 ′

− 𝑦 𝑖
2

=
1

𝑁
𝑤𝑇𝐗′ − 𝐘 𝑇 𝑤𝑇𝐗′ − 𝐘

GRADIENT DESCENT

 How do we find 𝑤∗ = argmin
𝑤∈ℝ𝑑+1

𝐽(𝑤; 𝐗, 𝐘)?

 A function’s gradient points in the direction of

steepest ascent, and its negative in the direction

of steepest descent

 Following the gradient downhill will cause us to

converge to a local minimum!

GRADIENT DESCENT

GRADIENT DESCENT

GRADIENT DESCENT

 Fix some constant learning rate 𝜂 (0.03 is usually a good

place to start)

 Initialize 𝑤 randomly

 Typically select each component of 𝑤 independently from

some standard distribution (uniform, normal, etc.)

 While 𝑤 is still changing (hasn’t converged)

 Update 𝑤 ← 𝑤 − 𝜂∇𝐽 𝑤; 𝐗, 𝐘

GRADIENT DESCENT

 For mean squared error loss in linear regression,

∇𝐽 𝑤; 𝐗, 𝐘 =
2

𝑁
𝑤𝑇𝐗′𝐗′

𝑇
− 𝐗′𝐘

 This is just linear algebra! GPUs are good at this kind of thing ☺

 Why do we care?

 𝑓 𝑥;𝑤∗ = 𝑤∗𝑇𝑥′ is the model with the lowest possible

mean-squared error on our training dataset (𝐗, 𝐘)!

STOCHASTIC GRADIENT DESCENT

 The previous algorithm computes the gradient over the

entire data set before stepping.

 Called batch gradient descent

 What if we just picked a single data point 𝑥 𝑖 , 𝑦 𝑖 at

random, computed the gradient for that point, and updated

the parameters?

 Called stochastic gradient descent

STOCHASTIC GRADIENT DESCENT

 Advantages of SGD

 Easier to implement for large datasets

 Works better for non-convex loss functions

 Sometimes faster

 Often use SGD on a “mini-batch” of 𝑘 examples rather than

just one at a time

 Allows higher throughput and more parallelization

BINARY LINEAR CLASSIFICATION

 𝑓 𝑥;𝑤 = 𝕀 𝑤𝑇𝑥′ > 0

 Divides ℝ𝑑 into two half-spaces

 𝑤𝑇𝑥′ = 0 is a hyperplane

 A line in 2D, a plane in 3D, and so on

 Known as the decision boundary

 Everything on one side of the hyperplane is class 0
and everything on the other side is class 1

BINARY LINEAR CLASSIFICATION

 Below: 𝑑 = 2. Black line is the decision boundary 𝑤𝑇𝑥′ = 0

MULTI-CLASS GENERALIZATION

 We want to classify 𝑥 into one of 𝑚 classes

 For each input 𝑥, 𝑦 is a vector in ℝ𝑚 with 𝑦𝑘 = 1 if class 𝑥 = 𝑘
and 𝑦𝑗 = 0 otherwise (i.e. 𝑦𝑘 = 𝕀 class 𝑥 = 𝑘)

 Known as a one-hot vector

 Our model 𝑓(𝑥;𝐖) is parametrized by a 𝑚 × (𝑑 + 1) matrix

𝐖 = 𝑤 1 , … , 𝑤 𝑚

 The model returns an 𝑚-dimensional vector (like 𝑦) with

𝑓𝑘 𝑥;𝐖 = 𝕀 argmax
𝑖

𝑤 𝑖 𝑇𝑥′ = 𝑘

MULTI-CLASS GENERALIZATION

 𝑤 𝑗 𝑇
𝑥′ = 𝑤 𝑘 𝑇

𝑥′ describes the intersection of 2

hyperplanes in ℝ𝑑+1 (where 𝑥 ∈ ℝ𝑑)

 Divides ℝ𝑑 into half-spaces; 𝑤 𝑗 𝑇
𝑥′ > 𝑤 𝑘 𝑇

𝑥′ on one side, vice

versa on the other side.

 If 𝑤 𝑗 𝑇
𝑥′ = 𝑤 𝑘 𝑇

𝑥′ = max
𝑖

𝑤 𝑖 𝑇𝑥′, this is a decision

boundary!

 Illustrative figures follow

MULTI-CLASS GENERALIZATION

 Below: 𝑑 = 1, 𝑚 = 4. max
𝑖

𝑤 𝑖 𝑇𝑥′ is graphed.

MULTI-CLASS GENERALIZATION

 Below: 𝑑 = 2, 𝑚 = 3. Lines are decision boundaries

𝑤 𝑗 𝑇
𝑥 = 𝑤 𝑘 𝑇

𝑥 = max
𝑖

𝑤 𝑖 𝑇𝑥

MULTI-CLASS GENERALIZATION

 For 𝑚 = 2 (binary classification), we get the

scalar version by setting 𝑤 = 𝑤 1 −𝑤 0

 𝑓1 𝑥;𝐖 = 𝕀 argmax
𝑖

𝑤 𝑖 𝑇𝑥′ = 1

= 𝕀 𝑤 1 𝑇
𝑥′ > 𝑤 0 𝑇

𝑥′

= 𝕀 𝑤 1 −𝑤 0 𝑇
𝑥′ > 0

FITTING A LINEAR CLASSIFIER

 𝑓 𝑥;𝑤 = 𝕀 𝑤𝑇𝑥′ > 0

 How do we turn this into something continuous and

differentiable?

 We really want to replace the indicator function 𝕀 with a

smooth function indicating the probability of whether 𝑦 is

0 or 1, based on the value of 𝑤𝑇𝑥′

PROBABILISTIC INTERPRETATION

 Interpreting 𝑤𝑇𝑥′

 𝑤𝑇𝑥′ large and positive

 ℙ 𝑦 = 0 ≪ ℙ[𝑦 = 1]

 𝑤𝑇𝑥′ large and negative

 ℙ 𝑦 = 0 ≫ ℙ[𝑦 = 1]

 𝑤𝑇𝑥′ small

 ℙ 𝑦 = 0 ≈ ℙ[𝑦 = 1]

PROBABILISTIC INTERPRETATION

PROBABILISTIC INTERPRETATION

 We therefore use the probability functions

 𝑝0 𝑥;𝑤 = ℙ 𝑦 = 0 =
1

1+exp(𝑤𝑇𝑥′)

 𝑝1 𝑥;𝑤 = ℙ 𝑦 = 1 =
exp(𝑤𝑇𝑥′)

1+exp(𝑤𝑇𝑥′)

 If 𝑤 = 𝑤 1 −𝑤 0 as before, this is just

𝑝𝑘 𝑥;𝑤 = ℙ 𝑦 = 𝑘 =
exp 𝑤 𝑘 𝑇

𝑥′

exp 𝑤 0 𝑇
𝑥′ +exp 𝑤 1 𝑇

𝑥′

PROBABILISTIC INTERPRETATION

 In the more general 𝑚-class case, we have

𝑝𝑘 𝑥;𝐖 = ℙ 𝑦𝑘 = 1 =
exp 𝑤 𝑘 𝑇

𝑥′

σ𝑖=1
𝑚 exp 𝑤 𝑖 𝑇𝑥′

 This is called the softmax activation and will be used to

define our loss function

THE CROSS-ENTROPY LOSS

 We want to heavily penalize cases where 𝑦𝑘 = 1 with

𝑝𝑘 𝑥;𝐖 ≪ 1

 This leads us to define the cross-entropy loss as follows:

𝐽 𝐖;𝐗, 𝐘 = −
1

𝑁

𝑖=1

𝑁

𝑘=1

𝑚

𝑦𝑘
𝑖
ln 𝑝𝑘 𝑥 𝑖 ;𝐖

MINIMIZING CROSS-ENTROPY

 As with mean-squared error, the cross-entropy loss is convex

and differentiable ☺

 That means that we can use gradient descent to converge to

a global minimum!

 This global minimum defines the best possible linear

classifier with respect to the cross-entropy loss and the data

set given

SUMMARY

 Basic process of constructing a machine learning model

 Choose an analytically well-behaved loss function that

represents some notion of error for your task

 Use gradient descent to choose model parameters that

minimize that loss function for your data set

 Examples: linear regression and mean squared error, linear

classification and cross-entropy

NEXT TIME

 Gradient of the cross-entropy loss

 Neural networks

 Backpropagation algorithm for gradient descent

