
CS 179: LECTURE 13

INTRO TO MACHINE LEARNING

GOALS OF WEEKS 5-6

 What is machine learning (ML) and when is it useful?

 Intro to major techniques and applications

 Give examples

 How can CUDA help?

 Departure from usual pattern: we will give the application

first, and the CUDA later

HOW TO FOLLOW THIS LECTURE

 This lecture and the next one will have a lot of math!

 Don’t worry about keeping up with the derivations 100%

 Important equations will be boxed

 Key terms to understand: loss/objective function, linear

regression, gradient descent, linear classifier

 The theory lectures will probably be boring for those of you

who have done some machine learning (CS156/155) already

WHAT IS ML GOOD FOR?

 Handwriting recognition

 Spam detection

WHAT IS ML GOOD FOR?

 Teaching a robot how to do a backflip

 https://youtu.be/fRj34o4hN4I

 Predicting the performance of a stock portfolio

 The list goes on!

https://youtu.be/fRj34o4hN4I

WHAT IS ML?

 What do these problems have in common?

 Some pattern we want to learn

 No good closed-form model for it

 LOTS of data

 What can we do?

 Use data to learn a statistical model for the
pattern we are interested in

DATA REPRESENTATION

 One data point is a vector 𝑥 in ℝ𝑑

 A 30 × 30 pixel image is a 900-dimensional vector

(one component per pixel intensity)

 If we are classifying an email as spam or not spam,

set 𝑑 = number of words in dictionary

 Count the number of times 𝑛𝑖 that a word 𝑖
appears in an email and set 𝑥𝑖 = 𝑛𝑖

 The possibilities are endless ☺

WHAT ARE WE TRYING TO DO?

 Given an input 𝑥 ∈ ℝ𝑑, produce an output 𝑦

 What is 𝑦?

 Could be a real number, e.g. predicted return of a

given stock portfolio

 Could be 0 or 1, e.g. spam or not spam

 Could be a vector in ℝ𝑚, e.g. telling a robot how

to move each of its 𝑚 joints

 Just like 𝑥, 𝑦 can be almost anything ☺

EXAMPLE OF (𝑥, 𝑦) PAIRS

 ,

0
0
0
0
0
1
0
0
0
0

, ,

1
0
0
0
0
0
0
0
0
0

, ,

0
1
0
0
0
0
0
0
0
0

, ,

0
0
0
1
0
0
0
0
0
0

, etc.

NOTATION

𝑥′ =
1

𝑥
∈ ℝ𝑑+1

𝐗 = 𝑥 1 , … , 𝑥 𝑁 ∈ ℝ𝑑×𝑁

𝐗′ = 𝑥 1 ′
, … , 𝑥 𝑁 ′

∈ ℝ 𝑑+1 ×𝑁

𝐘 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁×𝑚

𝕀 𝑝 = ቊ
1
0

𝑝 is true
otherwise

STATISTICAL MODELS

 Given (𝐗, 𝐘) (𝑁 pairs of 𝑥 𝑖 , 𝑦 𝑖 data), how do

we accurately predict an output 𝑦 given an input

𝑥?

 One solution: a model 𝑓(𝑥) parametrized by a

vector (or matrix) 𝑤, denoted as 𝑓 𝑥;𝑤

 The task is finding a set of optimal parameters 𝑤

FITTING A MODEL

 So what does optimal mean?

 Under some measure of closeness, we want
𝑓(𝑥;𝑤) to be as close as possible to the true
solution 𝑦 for any input 𝑥

 This measure of closeness is called a loss
function or objective function and is denoted
𝐽 𝑤; 𝐗, 𝐘 -- it depends on our data set (𝐗, 𝐘)!

 To fit a model, we try to find parameters 𝑤∗ that
minimize 𝐽(𝑤; 𝐗, 𝐘), i.e. an optimal 𝑤

FITTING A MODEL

 What characterizes a good loss function?

 Represents the magnitude of our model’s error on

the data we are given

 Penalizes large errors more than small ones

 Continuous and differentiable in 𝑤

 Bonus points if it is also convex in 𝑤

 Continuity, differentiability, and convexity are to

make minimization easier

LINEAR REGRESSION

 𝑓 𝑥;𝑤 = 𝑤0 + σ𝑖=1
𝑑 𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥′

 Below: 𝑑 = 1. 𝑤𝑇𝑥′ is graphed.

LINEAR REGRESSION

 What should we use as a loss function?

 Each 𝑦 𝑖 is a real number

 Mean-squared error is a good choice ☺

 𝐽 𝑤; 𝐗, 𝐘 =
1

𝑁
σ𝑖=1
𝑁 𝑓 𝑥 𝑖 ; 𝑤 − 𝑦 𝑖 2

=
1

𝑁
σ𝑖=1
𝑁 𝑤𝑇𝑥 𝑖 ′

− 𝑦 𝑖
2

=
1

𝑁
𝑤𝑇𝐗′ − 𝐘 𝑇 𝑤𝑇𝐗′ − 𝐘

GRADIENT DESCENT

 How do we find 𝑤∗ = argmin
𝑤∈ℝ𝑑+1

𝐽(𝑤; 𝐗, 𝐘)?

 A function’s gradient points in the direction of

steepest ascent, and its negative in the direction

of steepest descent

 Following the gradient downhill will cause us to

converge to a local minimum!

GRADIENT DESCENT

GRADIENT DESCENT

GRADIENT DESCENT

 Fix some constant learning rate 𝜂 (0.03 is usually a good

place to start)

 Initialize 𝑤 randomly

 Typically select each component of 𝑤 independently from

some standard distribution (uniform, normal, etc.)

 While 𝑤 is still changing (hasn’t converged)

 Update 𝑤 ← 𝑤 − 𝜂∇𝐽 𝑤; 𝐗, 𝐘

GRADIENT DESCENT

 For mean squared error loss in linear regression,

∇𝐽 𝑤; 𝐗, 𝐘 =
2

𝑁
𝑤𝑇𝐗′𝐗′

𝑇
− 𝐗′𝐘

 This is just linear algebra! GPUs are good at this kind of thing ☺

 Why do we care?

 𝑓 𝑥;𝑤∗ = 𝑤∗𝑇𝑥′ is the model with the lowest possible

mean-squared error on our training dataset (𝐗, 𝐘)!

STOCHASTIC GRADIENT DESCENT

 The previous algorithm computes the gradient over the

entire data set before stepping.

 Called batch gradient descent

 What if we just picked a single data point 𝑥 𝑖 , 𝑦 𝑖 at

random, computed the gradient for that point, and updated

the parameters?

 Called stochastic gradient descent

STOCHASTIC GRADIENT DESCENT

 Advantages of SGD

 Easier to implement for large datasets

 Works better for non-convex loss functions

 Sometimes faster

 Often use SGD on a “mini-batch” of 𝑘 examples rather than

just one at a time

 Allows higher throughput and more parallelization

BINARY LINEAR CLASSIFICATION

 𝑓 𝑥;𝑤 = 𝕀 𝑤𝑇𝑥′ > 0

 Divides ℝ𝑑 into two half-spaces

 𝑤𝑇𝑥′ = 0 is a hyperplane

 A line in 2D, a plane in 3D, and so on

 Known as the decision boundary

 Everything on one side of the hyperplane is class 0
and everything on the other side is class 1

BINARY LINEAR CLASSIFICATION

 Below: 𝑑 = 2. Black line is the decision boundary 𝑤𝑇𝑥′ = 0

MULTI-CLASS GENERALIZATION

 We want to classify 𝑥 into one of 𝑚 classes

 For each input 𝑥, 𝑦 is a vector in ℝ𝑚 with 𝑦𝑘 = 1 if class 𝑥 = 𝑘
and 𝑦𝑗 = 0 otherwise (i.e. 𝑦𝑘 = 𝕀 class 𝑥 = 𝑘)

 Known as a one-hot vector

 Our model 𝑓(𝑥;𝐖) is parametrized by a 𝑚 × (𝑑 + 1) matrix

𝐖 = 𝑤 1 , … , 𝑤 𝑚

 The model returns an 𝑚-dimensional vector (like 𝑦) with

𝑓𝑘 𝑥;𝐖 = 𝕀 argmax
𝑖

𝑤 𝑖 𝑇𝑥′ = 𝑘

MULTI-CLASS GENERALIZATION

 𝑤 𝑗 𝑇
𝑥′ = 𝑤 𝑘 𝑇

𝑥′ describes the intersection of 2

hyperplanes in ℝ𝑑+1 (where 𝑥 ∈ ℝ𝑑)

 Divides ℝ𝑑 into half-spaces; 𝑤 𝑗 𝑇
𝑥′ > 𝑤 𝑘 𝑇

𝑥′ on one side, vice

versa on the other side.

 If 𝑤 𝑗 𝑇
𝑥′ = 𝑤 𝑘 𝑇

𝑥′ = max
𝑖

𝑤 𝑖 𝑇𝑥′, this is a decision

boundary!

 Illustrative figures follow

MULTI-CLASS GENERALIZATION

 Below: 𝑑 = 1, 𝑚 = 4. max
𝑖

𝑤 𝑖 𝑇𝑥′ is graphed.

MULTI-CLASS GENERALIZATION

 Below: 𝑑 = 2, 𝑚 = 3. Lines are decision boundaries

𝑤 𝑗 𝑇
𝑥 = 𝑤 𝑘 𝑇

𝑥 = max
𝑖

𝑤 𝑖 𝑇𝑥

MULTI-CLASS GENERALIZATION

 For 𝑚 = 2 (binary classification), we get the

scalar version by setting 𝑤 = 𝑤 1 −𝑤 0

 𝑓1 𝑥;𝐖 = 𝕀 argmax
𝑖

𝑤 𝑖 𝑇𝑥′ = 1

= 𝕀 𝑤 1 𝑇
𝑥′ > 𝑤 0 𝑇

𝑥′

= 𝕀 𝑤 1 −𝑤 0 𝑇
𝑥′ > 0

FITTING A LINEAR CLASSIFIER

 𝑓 𝑥;𝑤 = 𝕀 𝑤𝑇𝑥′ > 0

 How do we turn this into something continuous and

differentiable?

 We really want to replace the indicator function 𝕀 with a

smooth function indicating the probability of whether 𝑦 is

0 or 1, based on the value of 𝑤𝑇𝑥′

PROBABILISTIC INTERPRETATION

 Interpreting 𝑤𝑇𝑥′

 𝑤𝑇𝑥′ large and positive

 ℙ 𝑦 = 0 ≪ ℙ[𝑦 = 1]

 𝑤𝑇𝑥′ large and negative

 ℙ 𝑦 = 0 ≫ ℙ[𝑦 = 1]

 𝑤𝑇𝑥′ small

 ℙ 𝑦 = 0 ≈ ℙ[𝑦 = 1]

PROBABILISTIC INTERPRETATION

PROBABILISTIC INTERPRETATION

 We therefore use the probability functions

 𝑝0 𝑥;𝑤 = ℙ 𝑦 = 0 =
1

1+exp(𝑤𝑇𝑥′)

 𝑝1 𝑥;𝑤 = ℙ 𝑦 = 1 =
exp(𝑤𝑇𝑥′)

1+exp(𝑤𝑇𝑥′)

 If 𝑤 = 𝑤 1 −𝑤 0 as before, this is just

𝑝𝑘 𝑥;𝑤 = ℙ 𝑦 = 𝑘 =
exp 𝑤 𝑘 𝑇

𝑥′

exp 𝑤 0 𝑇
𝑥′ +exp 𝑤 1 𝑇

𝑥′

PROBABILISTIC INTERPRETATION

 In the more general 𝑚-class case, we have

𝑝𝑘 𝑥;𝐖 = ℙ 𝑦𝑘 = 1 =
exp 𝑤 𝑘 𝑇

𝑥′

σ𝑖=1
𝑚 exp 𝑤 𝑖 𝑇𝑥′

 This is called the softmax activation and will be used to

define our loss function

THE CROSS-ENTROPY LOSS

 We want to heavily penalize cases where 𝑦𝑘 = 1 with

𝑝𝑘 𝑥;𝐖 ≪ 1

 This leads us to define the cross-entropy loss as follows:

𝐽 𝐖;𝐗, 𝐘 = −
1

𝑁
෍

𝑖=1

𝑁

෍

𝑘=1

𝑚

𝑦𝑘
𝑖
ln 𝑝𝑘 𝑥 𝑖 ;𝐖

MINIMIZING CROSS-ENTROPY

 As with mean-squared error, the cross-entropy loss is convex

and differentiable ☺

 That means that we can use gradient descent to converge to

a global minimum!

 This global minimum defines the best possible linear

classifier with respect to the cross-entropy loss and the data

set given

SUMMARY

 Basic process of constructing a machine learning model

 Choose an analytically well-behaved loss function that

represents some notion of error for your task

 Use gradient descent to choose model parameters that

minimize that loss function for your data set

 Examples: linear regression and mean squared error, linear

classification and cross-entropy

NEXT TIME

 Gradient of the cross-entropy loss

 Neural networks

 Backpropagation algorithm for gradient descent

