CS 179: GPU Programming Lecture 7

Last Week

- Memory optimizations using different GPU caches
- Atomic operations
- Synchronization with ____syncthreads()

Week 3

- Advanced GPU-accelerable algorithms
- "Reductions" to parallelize problems that don't seem intuitively parallelizable
 - Not the same as reductions in complexity theory or machine learning!

This Lecture

- GPU-accelerable algorithms:
 - Sum of array
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

Elementwise Addition

Problem: C[i] = A[i] + B[i]

• CPU code:

```
float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
        C[i] = A[i] + B[i];</pre>
```

• GPU code:

// assign device and host memory pointers, and allocate memory
in host

```
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
    C[thread_index] = A[thread_index] + B[thread_index];
    thread_index += blockDim.x * gridDim.x;
}
```

Reduction Example Problem: SUM(A[])

• CPU code:

float sum = 0.0; for (int i = 0; i < N; i++) sum += A[i];

GPU Pseudocode:

// set up device and host memory pointers
// create threads and get thread indices
// assign each thread a specific region to sum over
// wait for all threads to finish running (_____syncthreads;)
// combine all thread sums for final solution

Naive Reduction

Suppose we wished to accumulate our results...

Naive Reduction

 Race conditions! Could load old value before new one (from another thread) is written out

> global void cudaSum atomic kernel(const float* const inputs, unsigned int numberOfInputs, const float* const c, unsigned int polynomialOrder, float* output) { //set inputIndex to initial thread index... float partial sum = 0.0; while (inputIndex < numberOfInputs) {</pre> //calculate polynomial value at inputs[inputIndex] and //add it to the partial sum... //increment input index to the next value ... output += partial sum Thread-unsafe!

Naive (but correct) Reduction

We could do a bunch of atomic adds to our global accumulator...

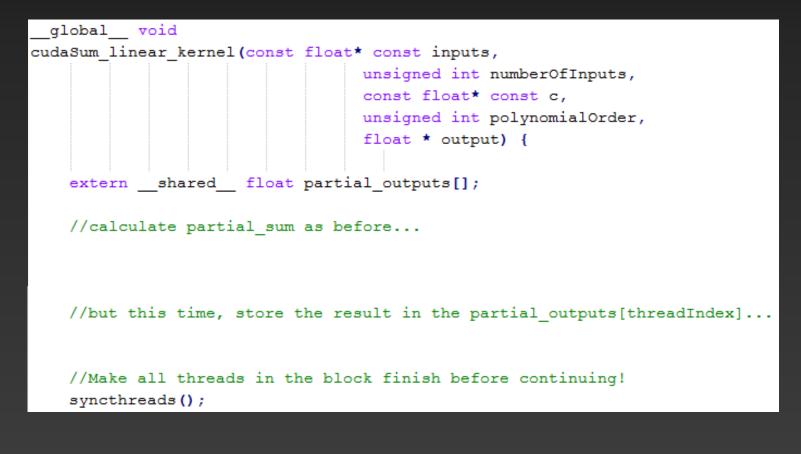
global void cudaSum_atomic_kernel(const float* const inputs, unsigned int numberOfInputs, const float* const c, unsigned int polynomialOrder, float* output) { //set inputIndex to initial thread index... float partial sum = 0.0; while (inputIndex < numberOfInputs) {</pre> //calculate polynomial value at inputs[inputIndex] and //add it to the partial sum... //increment input index to the next value ... atomicAdd (output, partial sum);

Naive (but correct) Reduction

But then we lose a lot of our parallelism ☺

global void cudaSum_atomic_kernel(const float* const inputs, unsigned int numberOfInputs, const float* const c, unsigned int polynomialOrder, float* output) { //set inputIndex to initial thread index... float partial sum = 0.0; while (inputIndex < numberOfInputs) {</pre> //calculate polynomial value at inputs[inputIndex] and //add it to the partial sum... //increment input index to the next value ... Every thread needs atomicAdd (output, partial sum); to wait...

- Right now, the only parallelism we get is partial sums per thread
- Idea: store partial sums per thread in shared memory
- If we do this, we can accumulate partial sums per block in shared memory, and THEN atomically add a much larger sum to the global accumulator

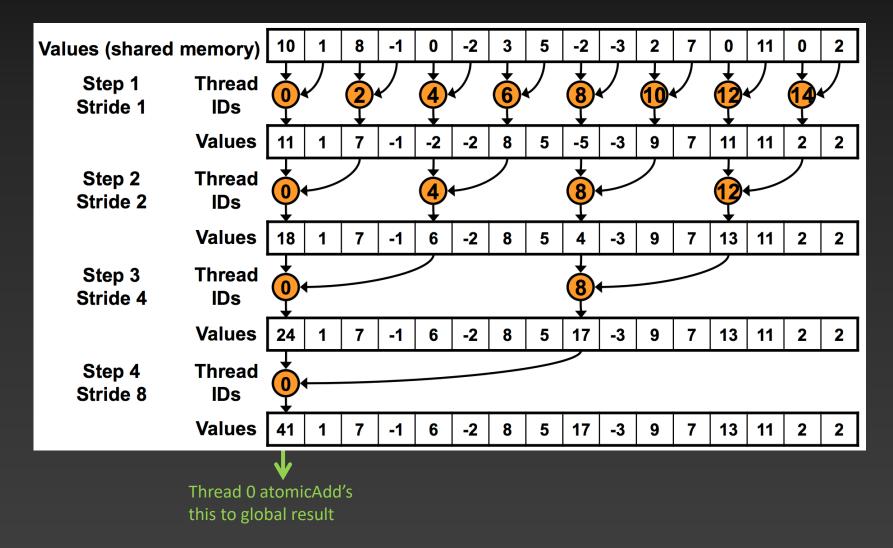


```
//Use the first thread in the block to accumulate the results
//of the other threads in said block
if (threadIdx.x == 0) {
    for (unsigned int threadIndex = 1; threadIndex < blockDim.x;</pre>
            ++threadIndex) {
        //Accumulate all the other partial sums into thread 0's
        //partial sum
        partial sum += partial outputs[threadIndex];
    //Now we finally accumulate
    atomicAdd (output, partial sum);
```

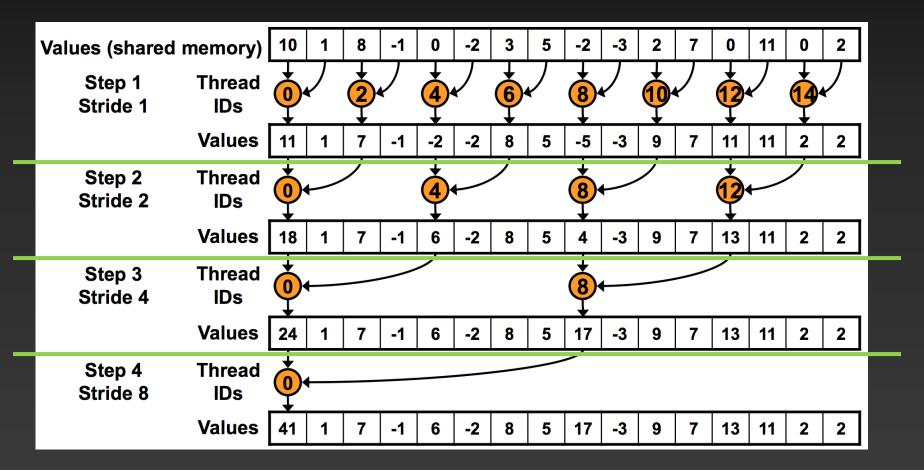
}

- It doesn't seem particularly efficient to have one thread per block accumulate for the entire block...
- Can we do better?

"Binary tree" reduction

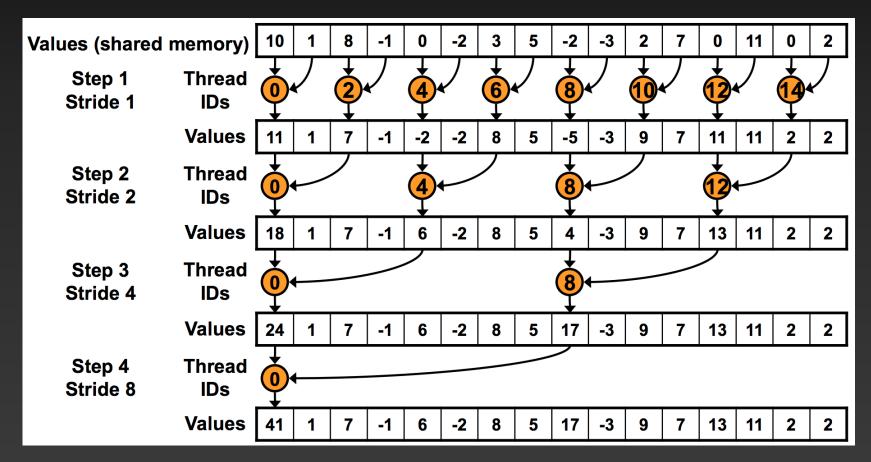


"Binary tree" reduction



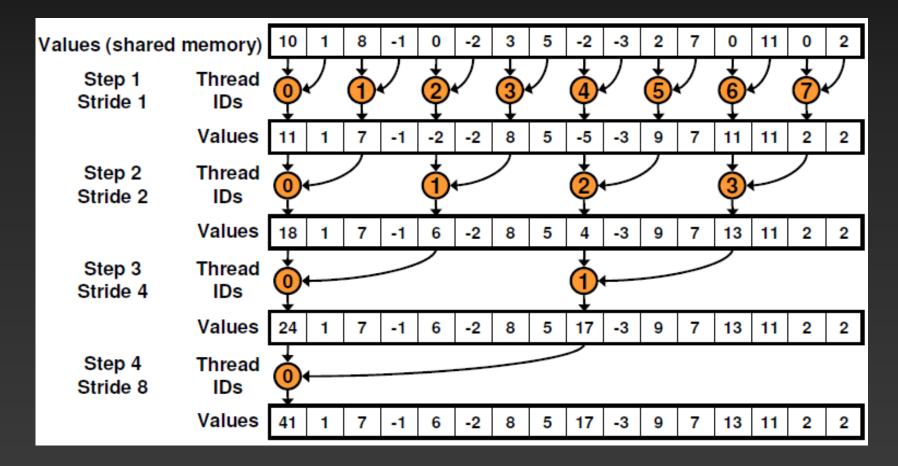
Use ____syncthreads() before proceeding!

"Binary tree" reduction

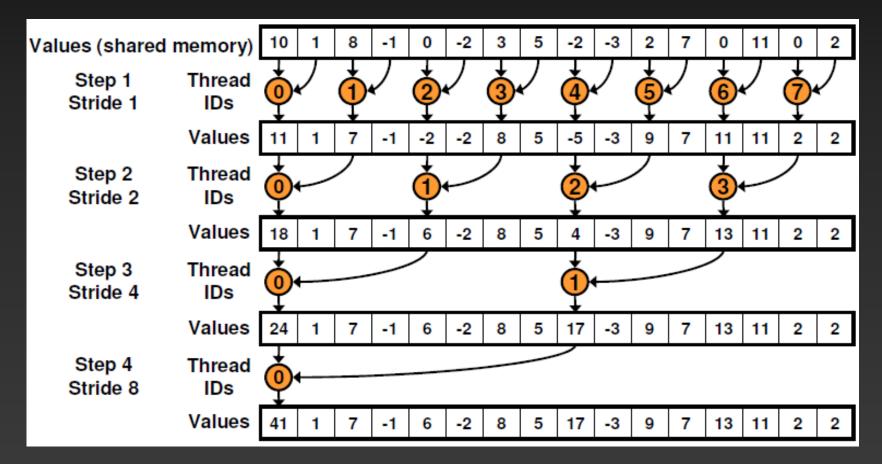


Warp Divergence! Odd threads won't even execute.

Non-divergent reduction



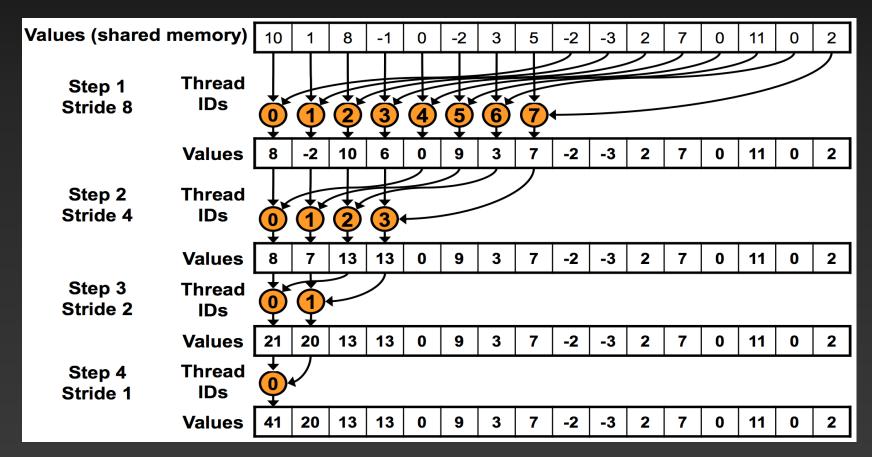
Non-divergent reduction



Shared Memory Bank Conflicts!

- 2-way on 1st iteration, 4-way on 2nd iteration, ...

Sequential addressing



Automatically resolves bank conflicts!

Sum Reduction

- More improvements possible (gets crazy!)
 - "Optimizing Parallel Reduction in CUDA" (Harris)

• Code examples!

- Moral:
 - Different type of GPU-accelerated problems
 Some are "parallelizable" in a different sense
 More hardware considerations in play

Outline

- GPU-accelerated:
 - Sum of array
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

• Given input sequence x[n], produce sequence $y[n] = \sum_{k=0}^{n-1} x[k]$

- e.g. x[n] = (1, 1, 1, 1, 1, 1, 1)
 -> y[n] = (0, 1, 2, 3, 4, 5, 6)
- e.g. x[n] = (1, 2, 3, 4, 5, 6)
 -> y[n] = (0, 1, 3, 6, 10, 15)

• Given input sequence x[n], produce sequence $y[n] = \sum_{k=0}^{n-1} x[k]$

• Recurrence relation: y[n] = y[n-1] + x[n]

- Recurrence relation: y[n] = y[n-1] + x[n]
 - Is it parallelizable? Is it GPU-accelerable?

- Recall:
 - $y[n] = x[n] + x[n-1] + \dots + x[n (K 1)]$
 - » Easily parallelizable!

$$- y[n] = c \cdot x[n] + (1-c) \cdot y[n-1]$$

» Not so much

- Recurrence relation: y[n] = y[n-1] + x[n]
 - Is it parallelizable? Is it GPU-accelerable?

• Goal:

Parallelize using a "reduction-like" strategy

Prefix Sum sample code (up-sweep)

X ₀	$\Sigma(\mathbf{x}_{0}\mathbf{x}_{1})$	X2	$\Sigma(x_{0}x_{3})$	X 4	Σ(x ₄ x ₅)	x ₆	$\Sigma(x_{0}x_{7})$
X ₀	$\Sigma(x_{0}x_{1})$	X2	$\Sigma(x_0x_3)$	X 4	Σ(x ₄ x ₅)	X6	$\Sigma(x_4x_7)$
X ₀	$\Sigma(x_0x_1)$	x ₂	$\Sigma(x_2x_3)$	X 4	$\Sigma(x_4x_5)$	X6	$\Sigma(x_{6}x_{7})$
						/	
X ₀	x ₁	X2	X3	X4	X5	x ₆	X7

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

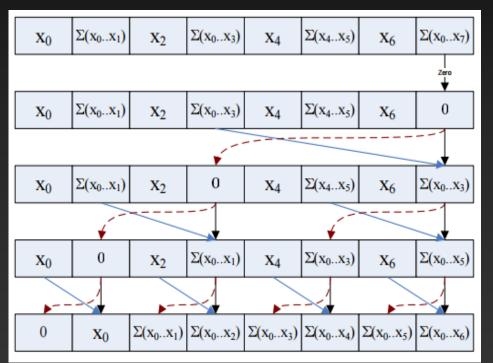
Original array

[1, 2, 3, 4, 5, 6, 7, 8]

for d = 0 to $(\log_2 n) - 1$ do for all k = 0 to n-1 by 2^{d+1} in parallel do $x[k + 2^{d+1} - 1] = x[k + 2^d - 1] + x[k + 2^d]$

We want: [0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum sample code (down-sweep)

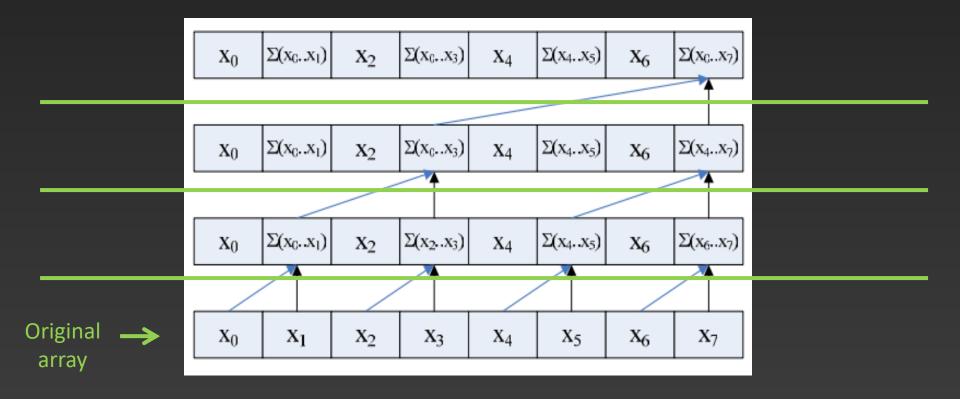


$$\begin{split} x[n-1] &= 0\\ \text{for } d &= \log_2(n) - 1 \text{ down to 0 do}\\ \text{for all } k &= 0 \text{ to } n-1 \text{ by } 2^d+1 \text{ in parallel do}\\ t &= x[k+2^d-1]\\ x[k+2^d-1] &= x[k+2^d]\\ x[k+2^d] &= t+x[k+2^d] \end{split}$$

(University of Michigan EECS, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf Original: [1, 2, 3, 4, 5, 6, 7, 8] [1, 3, 3, 10, 5, 11, 7, 36] [1, 3, 3, 10, 5, 11, 7, 0] [1, 3, 3, 0, 5, 11, 7, 10] [1, 0, 3, 3, 5, 10, 7, 21]**Final result** [0, 1, 3, 6, 10, 15, 21, 28]

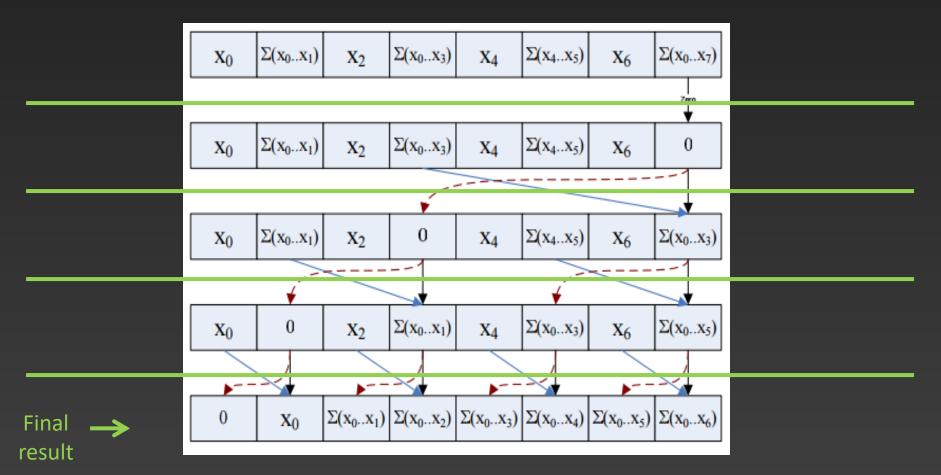
Prefix Sum (Up-Sweep)

Use ____syncthreads() before proceeding!



Prefix Sum (Down-Sweep)

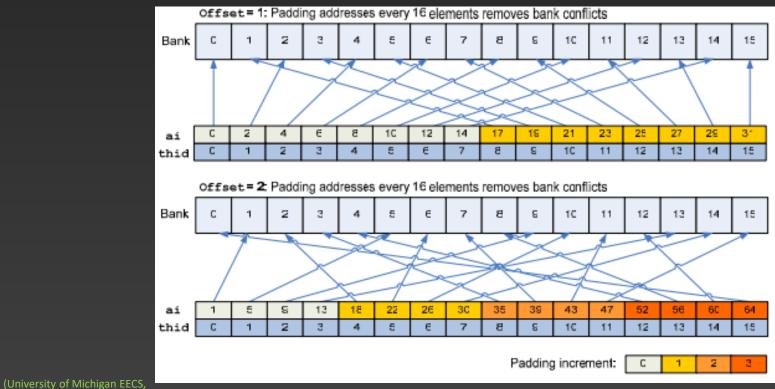
Use <u>syncthreads()</u> before proceeding!



(University of Michigan EECS, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

- Bank conflicts galore!
 - 2-way, 4-way, ...

- Bank conflicts!
 - 2-way, 4-way, ...
 - Pad addresses!



http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

- <u>http://http.developer.nvidia.com/GPUGems3/</u> <u>gpugems3_ch39.html</u> -- See Link for a More In-Depth Explanation of Up-Sweep and Down-Sweep
- See also Ch8 of textbook (Kirk and Hwu) for a more build-up and motivation for the upsweep and down-sweep algorithm (like we did for the array sum)

Outline

- GPU-accelerated:
 - Sum of array
 - Prefix sum
 - -Stream compaction
 - Sorting (quicksort)

Stream Compaction

- Problem:
 - Given array A, produce sub-array of A defined by Boolean condition

```
– e.g. given array:
```

2	5	1	4	6	3

• Produce array of numbers > 3

Stream Compaction

• Given array A:

- GPU kernel 1: Evaluate boolean condition,

• Array M: 1 if true, 0 if false

0 1 0	1 1 0
-------	-------

– GPU kernel 2: Cumulative sum of M (denote S)

	0	1	1	2	3	3	
--	---	---	---	---	---	---	--

- GPU kernel 3: At each index,

if M[idx] is 1, store A[idx] in output at position (S[idx] - 1)

5 4 6

Outline

- GPU-accelerated:
 - Sum of array
 - Prefix sum
 - Stream compaction
 - -Sorting (quicksort)

GPU-accelerated quicksort

• Quicksort:

Divide-and-conquer algorithm

– Partition array along chosen pivot point

Sequential partition

5 5

• Pseudocode:

```
quicksort(A, loIdx, hiIdx):
    if lo < hi:
        pIdx := partition(A, loIdx, hiIdx)
        quicksort(A, loIdx, pIdx - 1)
        quicksort(A, pIdx + 1, hiIdx)</pre>
```

GPU-accelerated partition

• Given array A:

Choose pivot (e.g. 3)

- Stream compact on condition: ≤ 3

Store pivot

- Stream compact on condition: > 3 (store with offset)

2 1 3 5 4 6	5 4 6
-------------	-------

GPU acceleration details

- Synchronize between calls of the previous algorithm
- Continued partitioning/synchronization on sub-arrays results in sorted array

Final Thoughts

- "Less obviously parallelizable" problems

 Hardware matters! (synchronization, bank conflicts, ...)
- Resources:
 - GPU Gems, Vol. 3, Ch. 39
 - Highly Recommend Reading <u>This</u> Guide to CUDA Optimization, with a Reduction Example
 - Kirk and Hwu Chapters 7-12 for more parallel algorithms