CS 179: GPU

 Programming Lecture 7
Last Week

- Memory optimizations using different GPU caches
- Atomic operations
- Synchronization with __syncthreads()

Week 3

- Advanced GPU-accelerable algorithms
- "Reductions" to parallelize problems that don't seem intuitively parallelizable
- Not the same as reductions in complexity theory or machine learning!

This Lecture

- GPU-accelerable algorithms:
- Sum of array
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Elementwise Addition

Problem: $\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]+\mathrm{B}[\mathrm{i}]$

- CPU code:

```
float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
    C[i] = A[i] + B[i];
```

- GPU code:
// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x; while (thread_index < N) \{

C[thread_index] = A[thread_index] + B[thread_index]; thread_index += blockDim.x * gridDim.x;
\}

Reduction Example Problem: SUM(A[])

- CPU code:

```
float sum = 0.0;
for (int i = 0; i < N; i++)
    sum += A[i];
```

- GPU Pseudocode:
// set up device and host memory pointers
// create threads and get thread indices
// assign each thread a specific region to sum over
// wait for all threads to finish running (__syncthreads;)
// combine all thread sums for final solution

Naive Reduction

- Suppose we wished to accumulate our results...

```
_global__ void
cudaSum_atomic_kernel(const float* const inputs,
    //set inputIndex to initial thread index...
    float partial_sum = 0.0;
    while (inputIndex < numberOfInputs) {
    //calculate polynomial value at inputs[inputIndex] and
    //add it to the partial sum...
        //increment input index to the next value...
    }
    output += partial_sum
```


Naive Reduction

- Race conditions! Could load old value before new one (from another thread) is written out

Naive (but correct) Reduction

- We could do a bunch of atomic adds to our global accumulator...

```
_global__ void
cudaSum_atomic_kernel(const float* const inputs,
                                    unsigned int numberOfInputs,
                                    const float* const c,
                                    unsigned int polynomialOrder,
                            float* output) {
    //set inputIndex to initial thread index...
    float partial_sum = 0.0;
    while (inputIndex < numberOfInputs) {
    //calculate polynomial value at inputs[inputIndex] and
    //add it to the partial sum...
    //increment input index to the next value...
    }
    atomicAdd(output, partial_sum);
```


Naive (but correct) Reduction

- But then we lose a lot of our parallelism © $(\underset{ }{\prime}$

Shared memory accumulation

- Right now, the only parallelism we get is partial sums per thread
- Idea: store partial sums per thread in shared memory
- If we do this, we can accumulate partial sums per block in shared memory, and THEN atomically add a much larger sum to the global accumulator

Shared memory accumulation

global void

```
cudaSum_linear_kernel(const float* const inputs,
                                    unsigned int numberOfInputs,
                                    const float* const c,
                                    unsigned int polynomialOrder,
                                    float * output) {
```

 extern
 \qquad shared \qquad float partial_outputs[];
//calculate partial_sum as before...
//but this time, store the result in the partial_outputs[threadIndex]...
//Make all threads in the block finish before continuing!
syncthreads() ;

Shared memory accumulation

```
//Use the first thread in the block to accumulate the results
//of the other threads in said block
if (threadIdx.x == 0) {
    for (unsigned int threadIndex = 1; threadIndex < blockDim.x;
            ++threadIndex) {
        //Accumulate all the other partial sums into thread 0's
        //partial sum
        partial_sum += partial_outputs[threadIndex];
    }
    //Now we finally accumulate
    atomicAdd(output, partial_sum);
}
```

\}

Shared memory accumulation

- It doesn't seem particularly efficient to have one thread per block accumulate for the entire block...
- Can we do better?

"Binary tree" reduction

Thread 0 atomicAdd's
this to global result

"Binary tree" reduction

Use __syncthreads() before proceeding!

"Binary tree" reduction

- Warp Divergence! Odd threads won't even execute.

Non-divergent reduction

Non-divergent reduction

- Shared Memory Bank Conflicts!
- 2-way on $1^{\text {st }}$ iteration, 4-way on $2^{\text {nd }}$ iteration, ...

Sequential addressing

- Automatically resolves bank conflicts!

Sum Reduction

- More improvements possible (gets crazy!)
- "Optimizing Parallel Reduction in CUDA" (Harris)
- Code examples!
- Moral:
- Different type of GPU-accelerated problems
- Some are "parallelizable" in a different sense
- More hardware considerations in play

Outline

- GPU-accelerated:
- Sum of array
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Prefix Sum

- Given input sequence x[n], produce sequence

$$
\begin{aligned}
& y[n]=\sum_{k=0}^{n-1} x[k] \\
&- \text { e.g. } x[n]=(1,1,1,1,1,1,1) \\
&->y[n]=(0,1,2,3,4,5,6) \\
&- \text { e.g. } x[n]=(1,2,3,4,5,6) \\
&->y[n]=(0,1,3,6,10,15)
\end{aligned}
$$

Prefix Sum

- Given input sequence x[n], produce sequence

$$
\begin{aligned}
& y[n]=\sum_{k=0}^{n-1} x[k] \\
& - \text { e.g. } \mathrm{x}[\mathrm{n}]=(1,2,3,4,5,6) \\
& ->\mathrm{y}[\mathrm{n}]=(0,1,3,6,10,15)
\end{aligned}
$$

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

Prefix Sum

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

- Is it parallelizable? Is it GPU-accelerable?
- Recall:
$-y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)]$
" Easily parallelizable!
$-y[n]=c \cdot x[n]+(1-c) \cdot y[n-1]$
" Not so much

Prefix Sum

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

- Is it parallelizable? Is it GPU-accelerable?
- Goal:
- Parallelize using a "reduction-like" strategy

Prefix Sum sample code (up-sweep)

$[1,3,3,10,5,11,7,36]$
for $d=0$ to $\left(\log _{2} n\right)-1$ do
for all $k=0$ to $n-1$ by 2^{d+1} in parallel do

$$
x\left[k+2^{d+1}-1\right]=x\left[k+2^{d}-1\right]+x\left[k+2^{d}\right]
$$

We want:
[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum sample code (down-sweep)

Original: $[1,2,3,4,5,6,7,8]$
$[1,3,3,10,5,11,7,36]$
$[1,3,3,10,5,11,7, \quad 0]$
$[1,3,3,0,5,11,7,10]$
$x[n-1]=0$
for $d=\log _{2}(n)-1$ down to 0 do
$[1,0,3,3,5,10,7,21]$
for all $k=0$ to $n-1$ by $2^{d}+1$ in parallel do

$$
\begin{aligned}
& t=x\left[k+2^{d}-1\right] \\
& x\left[k+2^{d}-1\right]=x\left[k+2^{d}\right] \\
& x\left[k+2^{d}\right]=t+x\left[k+2^{d}\right]
\end{aligned}
$$

Final result
[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum (Up-Sweep)

Use __syncthreads() before proceeding!

Prefix Sum (Down-Sweep)

Use __syncthreads() before proceeding!

Prefix Sum

- Bank conflicts galore!
- 2-way, 4-way, ...

Prefix Sum

- Bank conflicts!
- 2-way, 4-way, ...
- Pad addresses!

Offset $=\mathbf{2}$. Padding addresses every 16 elements removes bank conflicts

Padding increment: | C | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |

Prefix Sum

- http://http.developer.nvidia.com/GPUGems3/ gpugems3 ch39.html -- See Link for a More In-Depth Explanation of Up-Sweep and DownSweep
- See also Ch8 of textbook (Kirk and Hwu) for a more build-up and motivation for the upsweep and down-sweep algorithm (like we did for the array sum)

Outline

- GPU-accelerated:
- Sum of array
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Stream Compaction

- Problem:
- Given array A, produce sub-array of A defined by Boolean condition
- e.g. given array:

2	5	1	4	6	3

- Produce array of numbers > 3

Stream Compaction

- Given array A:

2	5	1	4	6	3

- GPU kernel 1: Evaluate boolean condition,
- Array M: 1 if true, 0 if false

0	1	0	1	1	0

- GPU kernel 2: Cumulative sum of M (denote S)

0	1	1	2	3	3

- GPU kernel 3: At each index,
- if M[idx] is 1 , store $A[i d x]$ in output at position (S[idx] - 1)

5	4	6

Outline

- GPU-accelerated:
- Sum of array
- Prefix sum
- Stream compaction
- Sorting (quicksort)

GPU-accelerated quicksort

- Quicksort:
- Divide-and-conquer algorithm
- Partition array along chosen pivot point

3	7	8	5	2	1	9	5	4

- Pseudocode:

```
quicksort(A, loIdx, hiIdx):
    if lo < hi:
        pIdx := partition(A, loIdx, hiIdx)
        quicksort(A, loIdx, pIdx - 1)
        quicksort(A, pIdx + 1, hiIdx)
```

3	7	8	4	2	1	9		55
3	4	2	7	8	1	9		5
3	4	2	1	5	7	9		5

3	4	2	1	5	5	9	8	7

GPU-accelerated partition

- Given array A:

2	5	1	4	6	3

- Choose pivot (e.g. 3)
- Stream compact on condition: ≤ 3

- Store pivot

2	1	3			

- Stream compact on condition: > 3 (store with offset)

2	1	3	5	4	6

GPU acceleration details

- Synchronize between calls of the previous algorithm
- Continued partitioning/synchronization on sub-arrays results in sorted array

Final Thoughts

- "Less obviously parallelizable" problems
- Hardware matters! (synchronization, bank conflicts, ...)
- Resources:
- GPU Gems, Vol. 3, Ch. 39
- Highly Recommend Reading This Guide to CUDA Optimization, with a Reduction Example
- Kirk and Hwu Chapters 7-12 for more parallel algorithms

