
CS 179: GPU 
Computing
LECTURE 2: INTRO TO THE SIMD LIFESTYLE AND 
GPU INTERNALS



Recap
Can use GPU to solve highly parallelizable problems

Straightforward extension to C++

◦ Separate CUDA code into .cu and .cuh files and compile with nvcc to 
create object files (.o files)

Looked at the a[] + b[] -> c[] example



Recap
If you forgot everything, just make sure you understand that CUDA is 
simply an extension of other bits of code you write!!!!

◦ Evident in .cu/.cuh vs .cpp/.hpp distinction

◦ .cu/.cuh is compiled by nvcc to produce a .o file

◦ .cpp/.hpp is compiled by g++ and the .o file from the CUDA code is 
simply linked in using a "#include xxx.cuh" call

◦ No different from how you link in .o files from normal C++ code



.cu/.cuh vs .cpp/.hpp



.cu/.cuh vs .cpp/.hpp



.cu/.cuh vs .cpp/.hpp



.cu/.cuh vs .cpp/.hpp



Thread Block Organization Keywords

◦ Keywords you MUST know to code in 
CUDA:

◦ Thread - Distributed by the CUDA 
runtime (threadIdx)

◦ Block - A user defined group of 1 to 
~512 threads (blockIdx) 

◦ Grid - A group of one or more blocks. 
A grid is created for each CUDA kernel 
function called



Block and Grid Dimensions
You can use a struct (defined in vector_types.h) called dim3 to define
your Grid and Block dimensions. 

• dim3 grid(256);            // defines a grid of 256 x 1 x 1 blocks
• dim3 block(512, 512);       // defines a block of 512 x 512 x 1 threads
• foo<<<grid, block>>>(...);



Grid/Block/Thread Visualized



Single Instruction, Multiple Data (SIMD)

◦ SIMD describes a class of instructions which perform the same operation on multiple 
registers simultaneously. 

◦ Example: Add some scalar to 3 registers, storing the output for each addition in those 
registers. 

◦ Used to increase the brightness of a pixel

◦ CPUs also have SIMD instructions and are very important for applications that need to do 
a lot of number crunching

◦ Video codecs like x264/x265 make extensive use of SIMD instructions to speed up video 
encoding and decoding.



SIMD continued
◦ Converting an algorithm to use SIMD is usually called “Vectorizing” 

◦ Not every algorithm can benefit from this or even be vectorized at all, e.x. 
Parsing. 

◦ Using SIMD instructions is not always beneficial though. 

◦ Even using the SIMD hardware requires additional power, and thus waste 
heat.

◦ If the gains are small it probably isn’t worth the additional complexity.

◦ Optimizing compilers like GCC and LLVM are still being trained to be able to 
vectorize code usefully, though there has been many exciting developments 
on this front in the last 2 years and is an active area of study. 

◦ https://polly.llvm.org/

https://polly.llvm.org/


Thread blocks and Warps visualized

Copyright Games Workshop inc.



Keywords you MUST know to 
code WELL in CUDA

◦ Streaming Multiprocessor – Each contains ~128 CUDA cores (which execute a 
thread) and their associated cache.

◦ Warp - A scheduling unit of up to 32 threads (all within the same block)

◦ Warp Divergence – A condition where threads within a warp need to execute 
different instructions in order to continue executing their kernel. 

◦ Causes threads to execute sequentially, in most cases ruining parallel 
performance

◦ As of the Kepler (2012) architecture each Warp can have at most 2 
branches, starting with Volta (2017) this condition has been nearly 
eliminated. For this class assume your code must only branch at most twice 
as we are not yet allocating Volta GPUs to this class. 



What a modern GPU looks like



Inside a GPU

The black Xs are just 
crossing out things you 

don’t have to think about 
just yet. You'll learn about 

them later



Inside a GPU 
Think of Device Memory (we will also
refer to it as Global Memory) as a
RAM for your GPU
◦ Faster than getting memory from the

actual RAM but still can be faster

◦ Will come back to this in future lectures

GPUs have many Streaming
Multiprocessors (SMs)
◦ Each SM has multiple processors but

only one instruction unit

◦ Groups of processors must run the
exact same set of instructions at any
given time with in a single SM



Inside a GPU 

When a kernel (the thing you define in
.cu files) is called, the task is divided up
into threads

◦ Each thread handles a small portion of
the given task

The threads are divided into a Grid of
Blocks

◦ Both Grids and Blocks are 3 dimensional

◦ e.g.

dim3 dimBlock(8, 8, 8);

dim3 dimGrid(100, 100, 1);

Kernel<<<dimGrid, dimBlock>>>(…);

◦ However, we'll often only work with 1
dimensional grids and blocks

◦ e.g. Kernel<<<block_count, block_size>>>(…);



Inside a GPU 

Maximum number of threads per block
count is usually 512 or 1024 depending
on the machine

Maximum number of blocks per grid is
usually 65535

◦ If you go over either of these numbers
your GPU will just give up or output
garbage data

◦ Much of GPU programming is dealing
with this kind of hardware limitations!
Get used to it

◦ This limitation also means that your
Kernel must compensate for the fact that
you may not have enough threads to
individually allocate to your data points

◦ Will show how to do this later (this lecture)



Inside a GPU 
Each block is assigned to an SM

Inside the SM, the block is divided into
Warps of threads

◦ Warps consist of 32 threads

◦ All 32 threads MUST run the exact
same set of instructions at the same
time

◦ Due to the fact that there is only one
instruction unit

◦ Warps are run concurrently in an SM

◦ If your Kernel tries to have threads do
different things in a single warp (using
if statements for example), the two tasks
will be run sequentially

◦ Called Warp Divergence (NOT GOOD)



Inside a GPU
(fun hardware info)

In Fermi Architecture (i.e. GPUs with
Compute Capability 2.x), each SM has
32 cores, later architectures have more. 

◦ e.g. GTX 400, 500 series

◦ 32 cores is not what makes each
warp have 32 threads. Previous
architecture also had 32 threads per
warp but had less than 32 cores per
SM

◦ Some early Pascal (2016) GPUs (GP100) had 
64 cores per SM, but later chips in that 
generation (GP104) had 128 core model. 



Streaming 
Multiprocessor

• Shown here is a Pascal GP104 GPU 
Streaming Multiprocessor that can be found
in a GTX1080 graphics card. 

• The exact amount of Cache and Shared 
Memory differ between GPU models, and 
even more so between different 
architectures.
• Whitepapers with exact information 

can be gotten from Nvidia (use Google)
• https://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINA
L.pdf

• http://www.nvidia.com/content/PDF/product-
specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf

• “nvidia kepler whitepaper” 

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf


A[] + B[] -> C[] (again) 
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A[] + B[] -> C[] (again)



Questions so far?



Stuff that will be useful later
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Next Time...
Global Memory access is not that fast

◦ Tends to be the bottleneck in many GPU programs

◦ Especially true if done stupidly
◦ We'll look at what "stupidly" means

Optimize memory access by utilizing hardware specific memory access 
patterns

Optimize memory access by utilizing different caches that come with 
the GPU


