
CS 179: GPU Programming

Lecture 1: Introduction

Images: http://en.wikipedia.org

http://www.pcper.com

http://northdallasradiationoncology.com/

GPU Gems (Nvidia)

Administration

Covered topics:

• (GP)GPU computing/parallelization

• C++ CUDA (parallel computing platform)

TAs:

• cs179.ta@gmail.com for set submission and extension requests

• Aadyot Bhatnagar(abhatnag@caltech.edu)

• Tyler Port (tport@caltech.edu)

Website:

• http://courses.cms.caltech.edu/cs179/

Overseeing Instructor:

• Al Barr (barr@cs.caltech.edu)

Class time:
• ANB 107, MWF 3:00 PM

• Recitations on Fridays

mailto:cs179.ta@gmail.com
mailto:abhatnag@caltech.edu
mailto:tport@caltech.edu

Course Requirements

Fill out this survey: https://goo.gl/forms/RZiUFBGYs2GKYEFA2

Fill out this when2meet for office hours ASAP:
https://www.when2meet.com/?6806202-GXLXT

Homework:
• 6 weekly assignments

• Each worth 10% of grade

Final project:
• 4-week project

• 40% of grade total

P/F Students must receive at least 60% on every

assignment AND the final project

https://goo.gl/forms/RZiUFBGYs2GKYEFA2
https://www.when2meet.com/?6806202-GXLXT

Homework

Due on Wednesdays before class (3PM)

First set out April 4th, due April 11th

Collaboration policy:
• Discuss ideas and strategies freely, but all code must be

your own

• Do not look up prior years solutions or reference

solution code from github without prior TA approval

Office Hours: Located in ANB 104
• Times: TBA (will be announced before first set is out)

Extensions
• Ask a TA for one if you have a valid reason

Projects

Topic of your choice
• We will also provide many options

Teams of up to 2 people
• 2-person teams will be held to higher

expectations

Requirements
• Project Proposal

• Progress report(s) and Final Presentation

• More info later…

Machines

Primary GPU machines available
• Currently being setup. You will receive a user account after

emailing cs179.ta@gmail.com

• Titan: titan.cms.caltech.edu (SSH and Mosh available)

• Haru: haru.cms.caltech.edu

• Maki: maki.caltech.edu

Secondary machines

• mx.cms.caltech.edu

• minuteman.cms.caltech.edu

• These use your CMS login

• NOTE: Not all assignments work on these machines

Change your password from the temp one we send you
• Use passwd command

mailto:cs179.ta@gmail.com

Machines

Alternative: Use your own machine:
• Must have an NVIDIA CUDA-capable GPU

• Virtual machines won’t work
• Exception: Machines with I/O MMU virtualization and

certain GPUs

• Special requirements for:
• Hybrid/optimus systems

• Mac/OS X

Setup guide on the website is outdated. Do not

follow 2016 instructions

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary

calculations
• General-purpose capabilities

• Established technology

• Usually equipped with 8 or less powerful cores

• Optimal for concurrent processes but not large scale

parallel computations

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg

The GPU

The "Graphics Processing Unit"

Relatively new technology designed for parallelizable problems
• Initially created specifically for graphics

• Became more capable of general computations

GPUs – The Motivation

Raytracing:

for all pixels (i,j):
Calculate ray point and direction in 3d space
if ray intersects object:
calculate lighting at closest object
store color of (i,j) Superquadric Cylinders, exponent 0.1, yellow glass balls, Barr, 1981

EXAMPLE

Add two arrays
• A[] + B[] -> C[]

On the CPU:

float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
C[i] = A[i] + B[i];
return C;

This operates sequentially… can we do better?

A simple problem…

• On the CPU (multi-threaded, pseudocode):

(allocate memory for C)
Create # of threads equal to number of cores on processor
(around 2, 4, perhaps 8)
(Indicate portions of A, B, C to each thread...)

...

In each thread,
For (i from beginning region of thread)
C[i] <- A[i] + B[i]
//lots of waiting involved for memory reads, writes, ...
Wait for threads to synchronize...

This is slightly faster – 2-8x (slightly more with other tricks)

A simple problem…

• How many threads? How does performance scale?

• Context switching:
• The action of switching which thread is being processed

• High penalty on the CPU

• Not an issue on the GPU

A simple problem…

• On the GPU:

(allocate memory for A, B, C on GPU)
Create the “kernel” – each thread will perform one (or a few)
additions

Specify the following kernel operation:

For all i‘s (indices) assigned to this thread:
C[i] <- A[i] + B[i]

Start ~20000 (!) threads
Wait for threads to synchronize...

GPU: Strengths Revealed

• Emphasis on parallelism means we have lots of cores

• This allows us to run many threads simultaneously with

no context switches

GPU Computing: Step by Step

• Setup inputs on the host (CPU-accessible memory)

• Allocate memory for outputs on the host

• Allocate memory for inputs on the GPU

• Allocate memory for outputs on the GPU

• Copy inputs from host to GPU

• Start GPU kernel (function that executed on gpu)

• Copy output from GPU to host

NOTE: Copying can be asynchronous, and unified memory

management is available

The Kernel

• Our “parallel” function

• Given to each thread

• Simple implementation:

Indexing

Can get a block ID and thread ID within the block:
Unique thread ID!

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://en.wikipedia.org/wiki/Thread_block

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://en.wikipedia.org/wiki/Thread_block

Calling the Kernel

Calling the Kernel (2)

Questions?

GPUs – Brief History

• Initially based on graphics focused

fixed-function pipelines
• Pre-set functions, limited options

http://gamedevelopment.tutsplus.com/articles/the-end-of-

fixed-function-rendering-pipelines-and-how-to-move-on--

cms-21469

Source: Super Mario 64, by Nintendo

GPUs – Brief History

• Shaders
• Could implement one’s own functions!

• GLSL (C-like language)

• Could “sneak in” general-purpose programming!

• Vulkan/OpenCL is the modern multiplatform general purpose GPU

compute system, but we won’t be covering it in this course

http://minecraftsix.com/glsl-shaders-mod/

GPUs – Brief History

“General-purpose computing on GPUs” (GPGPU)

• Hardware has gotten good enough to a point where it’s basically

having a mini-supercomputer

CUDA (Compute Unified Device Architecture)

• General-purpose parallel computing platform for NVIDIA GPUs

Vulkan/OpenCL (Open Computing Language)

• General heterogenous computing framework

Both are accessible as extensions to various languages

• If you’re into python, checkout Theano, pyCUDA.

