
CS 179: GPU 
Programming

Lecture 7



Week 3

• Goals:
– Advanced GPU-accelerable algorithms
– CUDA libraries and tools



This Lecture

• GPU-accelerable algorithms:
– Reduction
– Prefix sum
– Stream compaction
– Sorting (quicksort)



Elementwise Addition

• CPU code:
float *C = malloc(N * 
sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

• GPU code:
// assign device and host memory pointers, and allocate memory 
in host

int thread_index = threadIdx.x + blockIdx.x * blockDim.x;

while (thread_index < N) {

C[thread_index] = A[thread_index] + B[thread_index];

thread_index += blockDim.x * gridDim.x;

}

Problem: C[i] = A[i] + B[i]



Reduction Example

• GPU Pseudocode:
// assign, allocate, initialize device and host memory pointers
// create threads and assign indices for each thread
// assign each thread a specific region to get a sum over
// wait for all threads to finish running ( __syncthreads; )
// combine all thread sums for final solution

• CPU code:
float sum = 0.0;

for (int i = 0; i < N; i++)

sum += A[i];

Problem: SUM(A[])



Naïve Reduction

• Serial Recombination causes speed 
reduction with GPUs, especially with 
higher number of threads

• GPU must use atomic functions for mutex
– atomicCAS
– atomicAdd

Problem: Sum of Array



Naive Reduction

• Suppose we wished to accumulate our 
results…



Naive Reduction

• Suppose we wished to accumulate our 
results…

Thread-unsafe!



Naive (but correct) Reduction



Shared memory accumulation



Shared memory accumulation (2)



“Binary tree” reduction

One thread atomicAdd’s
this to global result



“Binary tree” reduction

Use __syncthreads() 
before proceeding!



“Binary tree” reduction

• Warp Divergence!
– Odd threads won’t even execute



Non-divergent reduction



• Shared Memory Bank Conflicts!
– 1st iteration: 2-way, 
– 2nd iteration: 4-way (!), …

Non-divergent reduction



Sequential addressing

Sequential Addressing Automatically Resolves Bank Conflict Problems



Reduction

• More improvements possible
– “Optimizing Parallel Reduction in CUDA” (Harris)

• Code examples!

• Moral:
– Different type of GPU-accelerized problems

• Some are “parallelizable” in a different sense

– More hardware considerations in play



Outline

• GPU-accelerated:
– Reduction

–Prefix sum
– Stream compaction
– Sorting (quicksort)



Prefix Sum

• Given input sequence x[n], produce sequence

– e.g. x[n] = (1, 2, 3, 4, 5, 6)
-> y[n] = (1, 3, 6, 10, 15, 21)

• Recurrence relation:



Prefix Sum

• Given input sequence x[n], produce sequence

– e.g. x[n] = (1, 1, 1, 1, 1, 1, 1)
-> y[n] = (1, 2, 3, 4, 5, 6, 7)

– e.g. x[n] = (1, 2, 3, 4, 5, 6)
-> y[n] = (1, 3, 6, 10, 15, 21)



Prefix Sum

• Recurrence relation:

– Is it parallelizable? Is it GPU-accelerable?

• Recall:
–

» Easily parallelizable!
–

» Not so much



Prefix Sum

• Recurrence relation:

– Is it parallelizable? Is it GPU-accelerable?

• Goal:
– Parallelize using a “reduction-like” strategy



Prefix Sum sample code (up-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

[1,  2,  3, 4,  5,  6,  7,  8]
Original array

We want: 
[0, 1, 3, 6, 10, 15, 21, 28]

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

for d = 0 to (log2n) -1 do
for all k = 0 to n-1 by 2d+1 in parallel do

x[k + 2d+1 – 1] = x[k + 2d -1] + x[k + 2d] 

d = 0

d = 1

d = 2



Prefix Sum sample code (down-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7,   0]

[1, 3, 3, 0,   5, 11, 7, 10]

[1, 0, 3, 3, 5, 10, 7, 21]

[0, 1, 3, 6, 10, 15, 21, 28]
Final result

Original:  [1, 2, 3, 4, 5, 6, 7, 8]

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

x[n-1] = 0
for d = log2(n) – 1 down to 0 do

for all k = 0 to n-1 by 2d+1 in parallel do
t = x[k + 2d – 1] 
x[k + 2d – 1] = x[k + 2d]
x[k + 2d] = t + x[k + 2d]

4: t = x[k + 2
d

– 1]

5: x[k + 2
d

– 1] = x[k + 2
d
+1 – 1]

6: x[k + 2
d
+1 – 1] = t + x[k + 2

d
+1 – 1]



Prefix Sum (Up-Sweep)

Original 
array

Use __syncthreads() 
before proceeding!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix Sum (Down-Sweep)

Final 
result

Use __syncthreads() 
before proceeding!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix sum

• Bank conflicts galore!
– 2-way, 4-way, …



Prefix sum
• Bank conflicts!

– 2-way, 4-way, …
– Pad addresses!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix Sum

• http://http.developer.nvidia.com/GPUGems3/
gpugems3_ch39.html -- See Link for a More 
In-Depth Explanation of Up-Sweep and Down-
Sweep



Outline

• GPU-accelerated:
– Reduction
– Prefix sum

– Stream compaction
– Sorting (quicksort)



Stream Compaction

• Problem: 
– Given array A, produce subarray of A defined by 

boolean condition

– e.g. given array:

• Produce array of numbers > 3

2 5 1 4 6 3

5 4 6



Stream Compaction

• Given array A:

– GPU kernel 1: Evaluate boolean condition,
• Array M: 1 if true, 0 if false

– GPU kernel 2: Cumulative sum of M (denote S)

– GPU kernel 3: At each index,
• if M[idx] is 1, store A[idx] in output at position (S[idx] - 1) 

2 5 1 4 6 3

0 1 0 1 1 0

0 1 1 2 3 3

5 4 6



Outline

• GPU-accelerated:
– Reduction
– Prefix sum
– Stream compaction

– Sorting (quicksort)



GPU-accelerated quicksort

• Quicksort:
– Divide-and-conquer algorithm
– Partition array along chosen pivot point

• Pseudocode:
quicksort(A, lo, hi):

if lo < hi:

p := partition(A, lo, hi)

quicksort(A, lo, p - 1)

quicksort(A, p + 1, hi)

Sequential 
version



GPU-accelerated partition

• Given array A:

– Choose pivot (e.g. 3)
– Stream compact on condition:  ≤ 3

– Store pivot

– Stream compact on condition:  > 3   (store with offset)

2 5 1 4 6 3

2 1

2 1 3

2 1 3 5 4 6



GPU acceleration details

• Continued partitioning/synchronization on 
sub-arrays results in sorted array



Final Thoughts

• “Less obviously parallelizable” problems
– Hardware matters! (synchronization, bank 

conflicts, …)

• Resources:
– GPU Gems, Vol. 3, Ch. 39
– Highly Recommend Reading This Guide to CUDA 

Optimization, with a Reduction Example


