
CS 179 Lecture 15
Set 5 & Machine Learning
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Set 5 Goals

Practice overlapping computation with data movement on a 
streaming workload - while building a machine learning 
system.
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2015 Set 5 Description

Cluster a stream of business review from Yelp.
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Representing Text as Vectors

Yelp reviews are text. How can we quantify the similarity 
between two snippets of text?

“The doctor has horrible bedside m anner”
“The enchiladas w ere the best I’ve ever had!”

One solution is to represent the snippets as numerical 
vectors.
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Bag of Words Approach

A very simple but very common approach. Count 
occurrences of each word

Loses all information on ordering of words.
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cats dogs hats love eat

cats love hats 1 0 1 1 0

cats eat hats 1 0 1 0 1

cat eat cats 2 0 0 0 1

document-term
matrix



Latent Semantic Analysis

Idea: Compute the singular value decomposition (SVD) of 
the document-term matrix. Singular values correspond to 
words that commonly appear together, which oftentimes 
correspond to our notion of a topic.

This is called latent semantic analysis.
Represent each document as coefficients of top-k singular 
vectors.
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Clustering

Group data points based on some sort of similarity. 
Clustering is a very common unsupervised learning 
problem.
Many variants of clustering:
● hard/soft
● hierarchical
● centroid
● distribution (Gaussian mixture models)
● density
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k-means Clustering

def k_m eans(data, k):
random ly initialize k “cluster centers”
w hile not converged:

for each data point:
assign data point to closest cluster center

for each cluster center:
m ove cluster center to average of points in cluster

return cluster centers
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Very popular centroid-based hard clustering algorithm.



Stream Clustering

Can we cluster if we can only see each data point once?
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def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each data point:

assign data point to closest cluster center
update closest cluster center w ith respect to data point

return cluster centers

This algorithm will give poor clustering.



Cheating at Streaming Algorithms

Idea: Use a streaming algorithm to create a smaller dataset 
(sketch) with properties similar to stream. Use expensive 
algorithm on sketch.

k_m eans(sloppy_k_m eans(stream , 20 * k), k)

Strategy described here, used by Apache Mahout. If length 
of stream is known (and finite), use k*log(n) clusters for 
sketch.
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http://www.slideshare.net/MapRTechnologies/fast-singlepass-kmeans-clusterting-at-oxford-05oct2012


Parallelization
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def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each data point:

assign data point to closest cluster center
update closest cluster center w ith respect to data point

return cluster centers

What can we parallelize here?



Batching for Parallelization
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def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each batch of data points:

par-for point in batch:
assign data point to closest cluster center

update cluster centers w ith respect to batch
return cluster centers



Batching

Changing the computation slightly to process a batch of 
data at a time is a common theme in parallel algorithms.

Although it does change the computation slightly, batching 
still leads to some sort of local minima of the loss function.

When you already aren’t going to find an optimal solution, 
cutting corners isn’t that bad :)
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Data Transfer Issues

Your program for set 5 will read LSA representations of 
reviews from stdin and will sloppy cluster them.

Your tasks:
● overlap data transfer and computation between host 

and device (hopefully saturate interface on haru)
● implement sloppy clustering algorithm
● analyze latency and throughput of system
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2016 Set 5 Outline

● Logistic regression
● (Stochastic) gradient descent
● Parallelizing SGD for neural nets (with emphasis on 

Google’s distributed neural net implementation)
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Binary Classification

Goal: Classify data into one of two categories.

“Is this Yelp review of a restaurant or of a different type of 
business”?

Given: 
● training set of (data, category) aka (X, y)
● test set of (X) for which we want to estimate y
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Logistic Regression

There are many other binary classification algorithms 
(random forests, SVM, Bayesian methods), but we’ll study 
logistic regression.
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Scalar Logistic Regression

p: probability of belonging to category 1
x: data point as n component vector
w: learned weight vector
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Vectorized Logistic Regression

Let matrix X be n x m  with each column being a separate 
data point.

Now p is an m  component vector of probabilities.
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Learning

How can we find an optimal weight vector w  from our 
training set?

In what sense can w  be optimal?
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Loss Functions

Weights can only be optimal with respect to some objective 
function. In general, we call this function the “loss” and we 
try to minimize it with respect to weights.

is the loss that gives logistic regression.
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Gradient Descent

Compute the gradient of loss 
with respect to weights, and 
update weights in direction of 
negative gradient.

Repeat until you hit a local 
minima. Have to pick a step 
size.
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Stochastic Gradient Descent (SGD)

The current formulation of gradient descent involves 
computing gradient over the entire dataset before stepping 
(called batch gradient set).

What if we pick a random data point, compute gradient for 
that point, and update the weights? Called stochastic 
gradient descent.
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SGD Advantages

● easier to implement for large datasets
● works better for non-convex loss functions
● sometimes faster (you update the gradient much earlier 

and more incrementally)

Often use SGD on a “mini-batch” rather than just a single 
point at a time. Allows higher throughput and more 
parallelization.
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Parallelizing SGD

2 (not mutually exclusive) routes:
● parallelize computation of a single gradient (model 

parallelism)
● compute multiple gradients at once (data parallelism)
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Model Parallelism

Model parallelism is “single model with parallel 
components”.

Can generally parallelize over the mini-batch.
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Model “MATLAB Parallelism”

Many models (including logistic regression!) include matrix 
multiplication or convolution in gradient computation.

This is a good example of “MATLAB parallelism”, scriptable 
parallel computation built on top of a few kernels.
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Model pipeline parallelism (in Google Brain neural nets)
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Data Parallelism

Run multiple copies of the model (that all share weights) on 
different data

Problem: SGD is very iterative. How do I synchronize 
updates to the weights?
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Hogwild!

Some problems such as matrix completion have sparse 
gradients. A single output depends only on a single row and 
column of factorization.
Solution: Don’t worry about synchronization! Gradient 
updates unlikely to touch each other because of sparsity.
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Downpour SGD from Google Brain
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Store all weights on a “parameter server.”

Each model replica fetches updated weights from server 

every nfetch steps and pushes gradient to server every npush 
steps.

Not a lot of theoretical justification, but it works :)
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Downpour SGD



Google Brain Parallelism Summary

Data parallelism - multiple model replicas communication 
with parameter server, using downpour SGD
Model pipeline parallelism - each replica consists of a 
group of machines computing parts of model
Model “MATLAB parallelism” - each part of each pipeline 
uses GPUs to process mini-batch in parallel

Check out the paper
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http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F4687-large-scale-distributed-deep-networks.pdf&ei=BYdKVbCcDMLfoATzqoHwBw&usg=AFQjCNHurtmX6mluRa0PVeRtjG88Zy5YbA&sig2=FcCMwsxF_wun8XLepzdRKw&bvm=bv.92291466,d.cGU


Final Thoughts

“MATLAB parallelism” is by far the simplest parallelism and 
is what you want when you have a single GPU.

Other parallelization techniques needed for bigger systems.

Keep GPUs in mind when doing machine learning, can 
often get ~10x speed-ups.
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General Machine Learning on GPU

Already seen k-means clustering…

Many machine learning numerical algorithms rely on just a 
few common computational building blocks.
● element-wise operations on vectors/matrices/tensors
● reductions along axes of vectors/matrices/tensors
● matrix multiplication
● solving linear systems
● convolution (FFT)
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Computational Building Blocks

These building blocks are why scientific scripting (MATLAB 
or Numpy) is so successful.
Often want to use the GPU by using a framework rather 
than writing your own CUDA code.
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Image from Todd Lehman



When to NOT Write Your Own CUDA

Heuristic: If you could write it efficiently in “clean” MATLAB, 
you could likely accelerate it solely through using libraries 
either from NVIDIA (cuBLAS, cuSPARSE, cuFFT) or the 
community (Theano, Torch).

Better to write less CUDA and then
call into a lot.
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http://deeplearning.net/software/theano/
http://torch.ch/


When to Write Your Own CUDA

Vectorized scripting languages must use a lot of memory when considering all 
combinations of input.

Example: What is the maximum distance between pairs of n points?

Most vectorized MATLAB implementations will store all n2 distances, and then 
compute the maximum over these. Quadratic memory and time.

An implementation in a language with loops (that you actually want to use) 
takes linear memory and quadratic time.
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