
CS 179 Lecture 15
Set 5 & Machine Learning

1

Set 5 Goals

Practice overlapping computation with data movement on a
streaming workload - while building a machine learning
system.

2

2015 Set 5 Description

Cluster a stream of business review from Yelp.

3

Representing Text as Vectors

Yelp reviews are text. How can we quantify the similarity
between two snippets of text?

“The doctor has horrible bedside m anner”
“The enchiladas w ere the best I’ve ever had!”

One solution is to represent the snippets as numerical
vectors.

4

Bag of Words Approach

A very simple but very common approach. Count
occurrences of each word

Loses all information on ordering of words.

5

cats dogs hats love eat

cats love hats 1 0 1 1 0

cats eat hats 1 0 1 0 1

cat eat cats 2 0 0 0 1

document-term
matrix

Latent Semantic Analysis

Idea: Compute the singular value decomposition (SVD) of
the document-term matrix. Singular values correspond to
words that commonly appear together, which oftentimes
correspond to our notion of a topic.

This is called latent semantic analysis.
Represent each document as coefficients of top-k singular
vectors.

6

Clustering

Group data points based on some sort of similarity.
Clustering is a very common unsupervised learning
problem.
Many variants of clustering:
● hard/soft
● hierarchical
● centroid
● distribution (Gaussian mixture models)
● density

7

k-means Clustering

def k_m eans(data, k):
random ly initialize k “cluster centers”
w hile not converged:

for each data point:
assign data point to closest cluster center

for each cluster center:
m ove cluster center to average of points in cluster

return cluster centers

8

Very popular centroid-based hard clustering algorithm.

Stream Clustering

Can we cluster if we can only see each data point once?

9

def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each data point:

assign data point to closest cluster center
update closest cluster center w ith respect to data point

return cluster centers

This algorithm will give poor clustering.

Cheating at Streaming Algorithms

Idea: Use a streaming algorithm to create a smaller dataset
(sketch) with properties similar to stream. Use expensive
algorithm on sketch.

k_m eans(sloppy_k_m eans(stream , 20 * k), k)

Strategy described here, used by Apache Mahout. If length
of stream is known (and finite), use k*log(n) clusters for
sketch.

10

http://www.slideshare.net/MapRTechnologies/fast-singlepass-kmeans-clusterting-at-oxford-05oct2012

Parallelization

11

def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each data point:

assign data point to closest cluster center
update closest cluster center w ith respect to data point

return cluster centers

What can we parallelize here?

Batching for Parallelization

12

def sloppy_k_m eans(int k):
random ly initialize k “cluster centers”
for each batch of data points:

par-for point in batch:
assign data point to closest cluster center

update cluster centers w ith respect to batch
return cluster centers

Batching

Changing the computation slightly to process a batch of
data at a time is a common theme in parallel algorithms.

Although it does change the computation slightly, batching
still leads to some sort of local minima of the loss function.

When you already aren’t going to find an optimal solution,
cutting corners isn’t that bad :)

13

Data Transfer Issues

Your program for set 5 will read LSA representations of
reviews from stdin and will sloppy cluster them.

Your tasks:
● overlap data transfer and computation between host

and device (hopefully saturate interface on haru)
● implement sloppy clustering algorithm
● analyze latency and throughput of system

14

2016 Set 5 Outline

● Logistic regression
● (Stochastic) gradient descent
● Parallelizing SGD for neural nets (with emphasis on

Google’s distributed neural net implementation)

15

Binary Classification

Goal: Classify data into one of two categories.

“Is this Yelp review of a restaurant or of a different type of
business”?

Given:
● training set of (data, category) aka (X, y)
● test set of (X) for which we want to estimate y

16

Logistic Regression

There are many other binary classification algorithms
(random forests, SVM, Bayesian methods), but we’ll study
logistic regression.

17

Scalar Logistic Regression

p: probability of belonging to category 1
x: data point as n component vector
w: learned weight vector

18

Vectorized Logistic Regression

Let matrix X be n x m with each column being a separate
data point.

Now p is an m component vector of probabilities.

19

Learning

How can we find an optimal weight vector w from our
training set?

In what sense can w be optimal?

20

Loss Functions

Weights can only be optimal with respect to some objective
function. In general, we call this function the “loss” and we
try to minimize it with respect to weights.

is the loss that gives logistic regression.

21

Gradient Descent

Compute the gradient of loss
with respect to weights, and
update weights in direction of
negative gradient.

Repeat until you hit a local
minima. Have to pick a step
size.

22

Stochastic Gradient Descent (SGD)

The current formulation of gradient descent involves
computing gradient over the entire dataset before stepping
(called batch gradient set).

What if we pick a random data point, compute gradient for
that point, and update the weights? Called stochastic
gradient descent.

23

SGD Advantages

● easier to implement for large datasets
● works better for non-convex loss functions
● sometimes faster (you update the gradient much earlier

and more incrementally)

Often use SGD on a “mini-batch” rather than just a single
point at a time. Allows higher throughput and more
parallelization.

24

Parallelizing SGD

2 (not mutually exclusive) routes:
● parallelize computation of a single gradient (model

parallelism)
● compute multiple gradients at once (data parallelism)

25

Model Parallelism

Model parallelism is “single model with parallel
components”.

Can generally parallelize over the mini-batch.

26

Model “MATLAB Parallelism”

Many models (including logistic regression!) include matrix
multiplication or convolution in gradient computation.

This is a good example of “MATLAB parallelism”, scriptable
parallel computation built on top of a few kernels.

27

Model pipeline parallelism (in Google Brain neural nets)
28

Data Parallelism

Run multiple copies of the model (that all share weights) on
different data

Problem: SGD is very iterative. How do I synchronize
updates to the weights?

29

Hogwild!

Some problems such as matrix completion have sparse
gradients. A single output depends only on a single row and
column of factorization.
Solution: Don’t worry about synchronization! Gradient
updates unlikely to touch each other because of sparsity.

30

Downpour SGD from Google Brain
31

Store all weights on a “parameter server.”

Each model replica fetches updated weights from server

every nfetch steps and pushes gradient to server every npush
steps.

Not a lot of theoretical justification, but it works :)

32

Downpour SGD

Google Brain Parallelism Summary

Data parallelism - multiple model replicas communication
with parameter server, using downpour SGD
Model pipeline parallelism - each replica consists of a
group of machines computing parts of model
Model “MATLAB parallelism” - each part of each pipeline
uses GPUs to process mini-batch in parallel

Check out the paper

33

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F4687-large-scale-distributed-deep-networks.pdf&ei=BYdKVbCcDMLfoATzqoHwBw&usg=AFQjCNHurtmX6mluRa0PVeRtjG88Zy5YbA&sig2=FcCMwsxF_wun8XLepzdRKw&bvm=bv.92291466,d.cGU

Final Thoughts

“MATLAB parallelism” is by far the simplest parallelism and
is what you want when you have a single GPU.

Other parallelization techniques needed for bigger systems.

Keep GPUs in mind when doing machine learning, can
often get ~10x speed-ups.

34

General Machine Learning on GPU

Already seen k-means clustering…

Many machine learning numerical algorithms rely on just a
few common computational building blocks.
● element-wise operations on vectors/matrices/tensors
● reductions along axes of vectors/matrices/tensors
● matrix multiplication
● solving linear systems
● convolution (FFT)

35

Computational Building Blocks

These building blocks are why scientific scripting (MATLAB
or Numpy) is so successful.
Often want to use the GPU by using a framework rather
than writing your own CUDA code.

36

Image from Todd Lehman

When to NOT Write Your Own CUDA

Heuristic: If you could write it efficiently in “clean” MATLAB,
you could likely accelerate it solely through using libraries
either from NVIDIA (cuBLAS, cuSPARSE, cuFFT) or the
community (Theano, Torch).

Better to write less CUDA and then
call into a lot.

37

http://deeplearning.net/software/theano/
http://torch.ch/

When to Write Your Own CUDA

Vectorized scripting languages must use a lot of memory when considering all
combinations of input.

Example: What is the maximum distance between pairs of n points?

Most vectorized MATLAB implementations will store all n2 distances, and then
compute the maximum over these. Quadratic memory and time.

An implementation in a language with loops (that you actually want to use)
takes linear memory and quadratic time.

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

