
CS 179: GPU Programming 

Lecture 12 / Homework 4 



Admin 

• Lab 4 is out – Due Wednesday, April 27 @3pm 

 

• Come to OH this week, this set is more 
difficult than before. 

 

 



Breadth-First Search 

• Given source vertex S: 

– Find min. #edges to reach every 
vertex from S 

– (Assume source is vertex 0) 
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• Sequential pseudocode: 
  let Q be a queue 

      Q.enqueue(source) 

      label source as discovered 

      source.value <- 0 

 

      while Q is not empty 

         v ← Q.dequeue() 

         for all edges from v to w in G.adjacentEdges(v): 

             if w is not labeled as discovered 

                 Q.enqueue(w) 

                 label w as discovered, w.value <- v.value + 1 

 



Alternate BFS algorithm 

• New sequential pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

 

         for 0 ≤ i < |Va|: 

            if F[i] is true: 

 

               F[i] <- false 

               X[i] <- true 

 

               for Ea[Va[i]] ≤ j < Ea[Va[i+1]]: 

                  if X[j] is false: 

 

                     C[j] <- C[i] + 1 

                     F[j] <- true 

 

 

 

 

Parallelizable! 



GPU-accelerated BFS 

• CPU-side pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

         call GPU kernel( F, X, C, Va, Ea ) 

• GPU-side kernel pseudocode: 
            if F[threadId] is true: 

 

               F[threadId] <- false 

               X[threadId] <- true 

 

               for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]: 

                  if X[j] is false: 

                     C[j] <- C[threadId] + 1 

                     F[j] <- true 

 

 

 

 

 

Can represent boolean 
values as integers 



X-ray CT Reconstruction 



X-ray Computed Tomography (CT) 

http://www.thefullwiki.org/Basic_Physics_of_Nuclear_
Medicine/X-Ray_CT_in_Nuclear_Medicine 

• “Algorithm” (per-slice): 
– Take *lots* of pictures at 

different angles 
• Each “picture” is a 1-D line 

– Reconstruct the many 1-D 
pictures into a 2-D image 

 

• Harder, more 
computationally intensive! 
– 3D reconstruction requires 

multiple slices 



Mathematical Details 

• X-ray CT (per-slice) performs a 2D X-ray 
transform (eq. to 2D Radon transform): 
– Suppose body density represented by 𝑓(𝑥 ) within 

2D slice, 𝑥 = (𝑥, 𝑦) 

– Assume linear attenuation of radiation 

– For each line L of radiation measured by detector: 

 

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿  𝑑𝑡
ℝ

 

 

• 𝜃 𝐿: a unit vector in direction of L 

 



Mathematical Details 

 

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿  𝑑𝑡
ℝ

 

 

• Defined as Lebesgue integral – non-oriented 

– Opposite radiation direction should have same 
attenuation! 

– Re-define as: 

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿  |𝑑𝑡|
∞

−∞

 

 



Mathematical Details 

– For each line L of radiation measured by detector: 

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿  |𝑑𝑡|
∞

−∞

 

 

• Define general X-ray transform (for all lines L in R2): 

(𝑅𝑓) 𝐿 =  𝑓 𝑥 0 + 𝑡𝜃 𝐿  |𝑑𝑡|
∞

−∞

 

 

– Fractional values of attenuation 

– 𝑥 0 lies along L 

 



Mathematical Details 

• Define general X-ray transform: 

(𝑅𝑓) 𝐿 =  𝑓 𝑥 0 + 𝑡𝜃 𝐿  |𝑑𝑡|
∞

−∞

 

– Parameterize 𝜃 = (cos 𝜃, sin 𝜃)    

 

• Redefine as: 

(𝑅𝑓) 𝑥 0, 𝜃 =  𝑓 𝑥 0 + 𝑡𝜃  |𝑑𝑡|
∞

−∞

 

 

– Define for 𝜃 ∈ [0, 2𝜋) 
 

 



Mathematical Details 

(𝑅𝑓) 𝑥 0, 𝜃 =  𝑓 𝑥 0 + 𝑡𝜃  |𝑑𝑡|
∞

−∞

 

 

• Important properties: 

– Many 𝑥 0 are redundant! 

– Symmetry: 𝑅𝑓 𝑥 0, 𝜃 = 𝑅𝑓 𝑥 0, 𝜃 + 𝜋  

• Can define for 𝜃 ∈ [0, 𝜋) 

 

 

 

 



X-ray Computed Tomography (CT) 

• Redefined X-ray transform, 𝜃 ∈ [0, 𝜋): 

(𝑅𝑓) 𝑥 0, 𝜃 =  𝑓 𝑥 0 + 𝑡𝜃  |𝑑𝑡|
∞

−∞

 

 

• In reality: 

– Only defined for some θ! 

 

 



X-ray CT Reconstruction 

• Given the results of our scan (the sinogram): 

(𝑅𝑓) 𝑥 0, 𝜃 =  𝑓 𝑥 0 + 𝑡𝜃  |𝑑𝑡|
∞

−∞

 

 

• Obtain the original data:    (“density” of our body) 

𝑓(𝑥, 𝑦) 

• In reality: 
– This is hard 

– We only scanned at certain (discrete) values of θ! 
• Consequence: Perfect reconstruction is impossible! 

 

 

 



Reconstruction 

… 

X-ray 
emitter 

X-ray 
detector 



Reconstruction 
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Reconstruction 

… 

X-ray 
emitter 

X-ray 
detector 

Different θ’s 

Each location on 
detector: 
Corresponds to 
multiple x0’s 



X-ray CT Reconstruction 

• Given the results of our scan (the sinogram): 

(𝑅𝑓) 𝑥 0, 𝜃 =  𝑓 𝑥 0 + 𝑡𝜃  |𝑑𝑡|
∞

−∞

 

 

• Obtain the original data:    (“density” of our body) 

𝑓(𝑥, 𝑦) 

• In reality: 
– This is hard 

– We only scanned at certain (discrete) values of θ! 
• Consequence: Perfect reconstruction is impossible! 

 

 

 



Imperfect Reconstruction 

10 angles of imaging 200 angles of imaging 



Reconstruction 

• Simpler algorithm – backprojection 
– Not quite inverse Radon transform! 

 

• Claim: Can reconstruct image as: 
 

𝑓𝑟(𝑥 )  = (𝑅𝑓) 𝑥 , 𝜃

𝜃

=  𝑓 𝑥 + 𝑡𝜃  |𝑑𝑡|
∞

−∞𝜃

 

 
– (θ’s where X-rays are taken) 

 
– In other words: To reconstruct point, sum measurement 

along every line passing through that point 



Reconstruction 

… 

X-ray 
emitter 

X-ray 
detector 

Different θ’s 

Each location on 
detector: 
Corresponds to 
multiple x0’s 



Geometry Details 

• For x0, need to find: 

– At each θ, which radiation measurement 
corresponds to the line passing through x0? 



Geometry Details 

Detector 

Emitter 

“The patient”  
  (slice) 



Geometry Details 

(x0, y0) 

Detector 

Emitter 

“The patient”  
  (slice) 

θ 



Geometry Details 

Detector 

Emitter 

“The patient”  
  (slice) 

θ 

Distance from 
sinogram centerline d 

(x0, y0) 



Geometry Details 

Detector 

Emitter 

“The patient”  
  (slice) 

θ 
Radiation slope:  
m = -cos(θ)/sin(θ) 

Distance from 
sinogram centerline d 

(x0, y0) 



Geometry Details 

Detector 

Emitter 

θ 
Radiation slope:  
m = -cos(θ)/sin(θ) 

θ 

Distance from 
sinogram centerline d 

Perpendicular slope: 
q = -1/m (correction) (x0, y0) 



Geometry Details 

Detector 

Emitter 

θ 
Radiation slope:  
m = -cos(θ)/sin(θ) 

θ 

Distance from 
sinogram centerline d 

Perpendicular slope: 
q = -1/m (correction) (x0, y0) 

Find intersection 
point (xi,yi) 
Then d2 = xi

2 + yi
2 

d 



Intersection point 

• Line 1: (point-slope) 

 
𝑦𝑖 − 𝑦0 = 𝑚(𝑥𝑖 − 𝑥0) 

• Line 2: 
𝑦𝑖 = 𝑞𝑥𝑖 

 

• Combine and solve: 

 

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 −𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖 

Corrections 



Intersection point 

• Intersection point: 

 

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 −𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖  

 

• Distance from measurement centerline: 

 

𝑑 = 𝑥𝑖
2 + 𝑦𝑖

2 

 

Corrections 



Geometry Details 

Detector 

Emitter 

θ 
Radiation slope:  
m = -cos(θ)/sin(θ) 

θ 

Distance from 
sinogram centerline d 

Perpendicular slope: 
q = -1/m (correction) (x0, y0) 

Find intersection 
point (xi,yi) 
Then d2 = xi

2 + yi
2 

d 



Sequential pseudocode 

(input: X-ray sinogram): 

(allocate output image) 

 

 

 

 

for all y in image: 

 for all x in image: 

  for all theta in sinogram: 

   calculate m from theta 

   calculate x_i, y_i from m, -1/m 

   calculate d from x_i, y_i 

   image[x,y] += sinogram[theta, “distance”] 

    

𝑓𝑟(𝑥 ) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

 

Clarification: Remember not 
to confuse geometric x,y 
with pixel x,y! 
 
(0,0) geometrically is the 
center pixel of the image, 
and (0,0) in pixel coordinates 
is the upper left hand corner. 
Image is indexed row-wise 

Correction/clarification: 
• d is the distance from the center of the 

sinogram – remember to center index 
appropriately 

• Use –d instead of d as appropriate (when -1/m 
> 0 and x_i < 0, or if -1/m < 0 and x_i > 0 



Sequential pseudocode 

(input: X-ray sinogram): 

(allocate output image) 

 

 

 

 

for all y in image: 

 for all x in image: 

  for all theta in sinogram: 

   calculate m from theta 

   calculate x_i, y_i from m, -1/m 

   calculate d from x_i, y_i 

   image[x,y] += sinogram[theta, “distance”] 

    

Parallelizable! 
Inside loop depends 
only on x, y, theta  

𝑓𝑟(𝑥 ) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

 

(corrections/clarification – 
see slide 37) 



Sequential pseudocode 

(input: X-ray sinogram): 

(allocate output image) 

 

 

 

 

for all y in image: 

 for all x in image: 

  for all theta in sinogram: 

   calculate m from theta 

   calculate x_i, y_i from m, -1/m 

   calculate d from x_i, y_i 

   image[x,y] += sinogram[theta, “distance”] 

    

For this assignment, only 
parallelize w/r/to x, y 
  
(provides lots of 
parallelization already, 
other issues) 

𝑓𝑟(𝑥 ) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

 

(corrections/clarification – 
see slide 37) 



Cautionary notes 

• y in an image is opposite of y geometrically! 

– (Graphics/computing convention) 

• Edge cases (divide-by-0): 

– θ = 0: 

• d = x0 

– θ = π/2: 

• d = y0 



Almost a good reconstruction! 

Original 

Reconstruction 



Almost a good reconstruction! 

• “Backprojection blur” 

– Similar to low-pass 
property of SMA (Week 1) 

 

– We need an “anti-blur”! 
(opposite of Homework 1) 



Almost a good reconstruction! 

• Solution: 

– A “high-pass filter” 

 

– We can get frequency info 
in parallelizable manner! 

• (FFT, Week 3) 



Almost a good reconstruction! 

• Solution: 

– A “high-pass filter” 

 

– We can get frequency info 
in parallelizable manner! 

• (FFT, Week 3) 



High-pass filtering 

• Instead of filtering on image (2D HPF): 

– Filter on sinogram! (1D HPF) 

• (Equivalent reconstruction by linearity) 

– Use cuFFT batch feature! 

 

• We’ll use a “ramp filter” 

– Retained amplitude is 

    linear function of frequency 



Almost a good reconstruction! 

• CPU-side: 
 

(input: X-ray sinogram): 

 

calculate FFT on sinogram using cuFFT 

call filterKernel on freq-domain data 

Calculate IFFT on freq-domain data 

 -> get new sinogram 

• GPU-side: 
 

filterKernel: 

 Select specific freq-amplitude 

 based on thread ID 

 

 Get new amplitude from  

 ramp equation 



GPU Hardware 

• Non-coalesced access! 

– Sinogram 0, index ~d0 

– Sinogram 1, index ~d1 

– Sinogram 2, index ~d2 

– … 

… 



GPU Hardware 

• Non-coalesced access! 

– Sinogram 0, index ~d0 

– Sinogram 1, index ~d1 

– Sinogram 2, index ~d2 

– … 

• However: 

– Accesses are 2D spatially local! 

… 



GPU Hardware 

• Solution: 

– Cache sinogram in texture memory! 

• Read-only (un-modified once we load it) 

• Ignore coalescing 

• 2D spatial caching! 

… 



Summary/pseudocode 

(input: X-ray sinogram) 

 

Filter sinogram (Slide 46) 

 

Set up 2D texture cache on sinogram (Lecture 10): 

 Copy to CUDA array (2D) 

 Set addressing mode (clamp) 

 Set filter mode (linear, but won’t matter) 

 Set no normalization 

 Bind texture to sinogram 

 

Calculate image backprojection (parallelize Slide 39) 

 

• Result: 200-250x speedup! (or more) 



• Result: 200-250x speedup! (or more) 



Demo 

• We use two python scripts to prepare the data 
for the sinogram and to process the output. 

• preprocess.py 

– Simulated CT scanner 

– Forward Radon Transform 

 

• postprocess.py 

– Produces image based on CT Reconstruction 

 



Demo 

The “1_input_mpl_falsecolor.png" file is the rendering of the image with 
false color. 



Demo 

The "2_input_mpl_grayscale.png" file is the rendering of the image with 
greyscale.  



Demo 

The "3_sinogram_as_image.png" file is the sinogram in an image format. 
Each column is a line of radiation measurement. 



Demo 

The "5_recon_output.png" file is the reconstructed image.  
The output image of your program should resemble this image.  



Demo 

More angles allow us to view the body density much more accurately. 

10 angles vs 100 angles 



Demo 

  


