
CS 179: GPU Programming

Lecture 12 / Homework 4

Admin

• Lab 4 is out – Due Wednesday, April 27 @3pm

• Come to OH this week, this set is more
difficult than before.

Breadth-First Search

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

0

1 1 2

2 3

• Sequential pseudocode:
 let Q be a queue

 Q.enqueue(source)

 label source as discovered

 source.value <- 0

 while Q is not empty

 v ← Q.dequeue()

 for all edges from v to w in G.adjacentEdges(v):

 if w is not labeled as discovered

 Q.enqueue(w)

 label w as discovered, w.value <- v.value + 1

Alternate BFS algorithm

• New sequential pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 for 0 ≤ i < |Va|:

 if F[i] is true:

 F[i] <- false

 X[i] <- true

 for Ea[Va[i]] ≤ j < Ea[Va[i+1]]:

 if X[j] is false:

 C[j] <- C[i] + 1

 F[j] <- true

Parallelizable!

GPU-accelerated BFS

• CPU-side pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 call GPU kernel(F, X, C, Va, Ea)

• GPU-side kernel pseudocode:
 if F[threadId] is true:

 F[threadId] <- false

 X[threadId] <- true

 for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:

 if X[j] is false:

 C[j] <- C[threadId] + 1

 F[j] <- true

Can represent boolean
values as integers

X-ray CT Reconstruction

X-ray Computed Tomography (CT)

http://www.thefullwiki.org/Basic_Physics_of_Nuclear_
Medicine/X-Ray_CT_in_Nuclear_Medicine

• “Algorithm” (per-slice):
– Take *lots* of pictures at

different angles
• Each “picture” is a 1-D line

– Reconstruct the many 1-D
pictures into a 2-D image

• Harder, more
computationally intensive!
– 3D reconstruction requires

multiple slices

Mathematical Details

• X-ray CT (per-slice) performs a 2D X-ray
transform (eq. to 2D Radon transform):
– Suppose body density represented by 𝑓(𝑥) within

2D slice, 𝑥 = (𝑥, 𝑦)

– Assume linear attenuation of radiation

– For each line L of radiation measured by detector:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿 𝑑𝑡
ℝ

• 𝜃 𝐿: a unit vector in direction of L

Mathematical Details

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿 𝑑𝑡
ℝ

• Defined as Lebesgue integral – non-oriented

– Opposite radiation direction should have same
attenuation!

– Re-define as:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿 |𝑑𝑡|
∞

−∞

Mathematical Details

– For each line L of radiation measured by detector:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡 𝑓
𝐿

= 𝐼𝑒𝑚𝑖𝑡 𝑓 𝑥 0 + 𝑡𝜃 𝐿 |𝑑𝑡|
∞

−∞

• Define general X-ray transform (for all lines L in R2):

(𝑅𝑓) 𝐿 = 𝑓 𝑥 0 + 𝑡𝜃 𝐿 |𝑑𝑡|
∞

−∞

– Fractional values of attenuation

– 𝑥 0 lies along L

Mathematical Details

• Define general X-ray transform:

(𝑅𝑓) 𝐿 = 𝑓 𝑥 0 + 𝑡𝜃 𝐿 |𝑑𝑡|
∞

−∞

– Parameterize 𝜃 = (cos 𝜃, sin 𝜃)

• Redefine as:

(𝑅𝑓) 𝑥 0, 𝜃 = 𝑓 𝑥 0 + 𝑡𝜃 |𝑑𝑡|
∞

−∞

– Define for 𝜃 ∈ [0, 2𝜋)

Mathematical Details

(𝑅𝑓) 𝑥 0, 𝜃 = 𝑓 𝑥 0 + 𝑡𝜃 |𝑑𝑡|
∞

−∞

• Important properties:

– Many 𝑥 0 are redundant!

– Symmetry: 𝑅𝑓 𝑥 0, 𝜃 = 𝑅𝑓 𝑥 0, 𝜃 + 𝜋

• Can define for 𝜃 ∈ [0, 𝜋)

X-ray Computed Tomography (CT)

• Redefined X-ray transform, 𝜃 ∈ [0, 𝜋):

(𝑅𝑓) 𝑥 0, 𝜃 = 𝑓 𝑥 0 + 𝑡𝜃 |𝑑𝑡|
∞

−∞

• In reality:

– Only defined for some θ!

X-ray CT Reconstruction

• Given the results of our scan (the sinogram):

(𝑅𝑓) 𝑥 0, 𝜃 = 𝑓 𝑥 0 + 𝑡𝜃 |𝑑𝑡|
∞

−∞

• Obtain the original data: (“density” of our body)

𝑓(𝑥, 𝑦)

• In reality:
– This is hard

– We only scanned at certain (discrete) values of θ!
• Consequence: Perfect reconstruction is impossible!

Reconstruction

…

X-ray
emitter

X-ray
detector

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Each location on
detector:
Corresponds to
multiple x0’s

X-ray CT Reconstruction

• Given the results of our scan (the sinogram):

(𝑅𝑓) 𝑥 0, 𝜃 = 𝑓 𝑥 0 + 𝑡𝜃 |𝑑𝑡|
∞

−∞

• Obtain the original data: (“density” of our body)

𝑓(𝑥, 𝑦)

• In reality:
– This is hard

– We only scanned at certain (discrete) values of θ!
• Consequence: Perfect reconstruction is impossible!

Imperfect Reconstruction

10 angles of imaging 200 angles of imaging

Reconstruction

• Simpler algorithm – backprojection
– Not quite inverse Radon transform!

• Claim: Can reconstruct image as:

𝑓𝑟(𝑥) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

= 𝑓 𝑥 + 𝑡𝜃 |𝑑𝑡|
∞

−∞𝜃

– (θ’s where X-rays are taken)

– In other words: To reconstruct point, sum measurement

along every line passing through that point

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Each location on
detector:
Corresponds to
multiple x0’s

Geometry Details

• For x0, need to find:

– At each θ, which radiation measurement
corresponds to the line passing through x0?

Geometry Details

Detector

Emitter

“The patient”
 (slice)

Geometry Details

(x0, y0)

Detector

Emitter

“The patient”
 (slice)

θ

Geometry Details

Detector

Emitter

“The patient”
 (slice)

θ

Distance from
sinogram centerline d

(x0, y0)

Geometry Details

Detector

Emitter

“The patient”
 (slice)

θ
Radiation slope:
m = -cos(θ)/sin(θ)

Distance from
sinogram centerline d

(x0, y0)

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m (correction) (x0, y0)

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m (correction) (x0, y0)

Find intersection
point (xi,yi)
Then d2 = xi

2 + yi
2

d

Intersection point

• Line 1: (point-slope)

𝑦𝑖 − 𝑦0 = 𝑚(𝑥𝑖 − 𝑥0)

• Line 2:
𝑦𝑖 = 𝑞𝑥𝑖

• Combine and solve:

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 −𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖

Corrections

Intersection point

• Intersection point:

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 −𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖

• Distance from measurement centerline:

𝑑 = 𝑥𝑖
2 + 𝑦𝑖

2

Corrections

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m (correction) (x0, y0)

Find intersection
point (xi,yi)
Then d2 = xi

2 + yi
2

d

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

 for all x in image:

 for all theta in sinogram:

 calculate m from theta

 calculate x_i, y_i from m, -1/m

 calculate d from x_i, y_i

 image[x,y] += sinogram[theta, “distance”]

𝑓𝑟(𝑥) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

Clarification: Remember not
to confuse geometric x,y
with pixel x,y!

(0,0) geometrically is the
center pixel of the image,
and (0,0) in pixel coordinates
is the upper left hand corner.
Image is indexed row-wise

Correction/clarification:
• d is the distance from the center of the

sinogram – remember to center index
appropriately

• Use –d instead of d as appropriate (when -1/m
> 0 and x_i < 0, or if -1/m < 0 and x_i > 0

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

 for all x in image:

 for all theta in sinogram:

 calculate m from theta

 calculate x_i, y_i from m, -1/m

 calculate d from x_i, y_i

 image[x,y] += sinogram[theta, “distance”]

Parallelizable!
Inside loop depends
only on x, y, theta

𝑓𝑟(𝑥) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

(corrections/clarification –
see slide 37)

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

 for all x in image:

 for all theta in sinogram:

 calculate m from theta

 calculate x_i, y_i from m, -1/m

 calculate d from x_i, y_i

 image[x,y] += sinogram[theta, “distance”]

For this assignment, only
parallelize w/r/to x, y

(provides lots of
parallelization already,
other issues)

𝑓𝑟(𝑥) = (𝑅𝑓) 𝑥 , 𝜃

𝜃

(corrections/clarification –
see slide 37)

Cautionary notes

• y in an image is opposite of y geometrically!

– (Graphics/computing convention)

• Edge cases (divide-by-0):

– θ = 0:

• d = x0

– θ = π/2:

• d = y0

Almost a good reconstruction!

Original

Reconstruction

Almost a good reconstruction!

• “Backprojection blur”

– Similar to low-pass
property of SMA (Week 1)

– We need an “anti-blur”!
(opposite of Homework 1)

Almost a good reconstruction!

• Solution:

– A “high-pass filter”

– We can get frequency info
in parallelizable manner!

• (FFT, Week 3)

Almost a good reconstruction!

• Solution:

– A “high-pass filter”

– We can get frequency info
in parallelizable manner!

• (FFT, Week 3)

High-pass filtering

• Instead of filtering on image (2D HPF):

– Filter on sinogram! (1D HPF)

• (Equivalent reconstruction by linearity)

– Use cuFFT batch feature!

• We’ll use a “ramp filter”

– Retained amplitude is

 linear function of frequency

Almost a good reconstruction!

• CPU-side:

(input: X-ray sinogram):

calculate FFT on sinogram using cuFFT

call filterKernel on freq-domain data

Calculate IFFT on freq-domain data

 -> get new sinogram

• GPU-side:

filterKernel:

 Select specific freq-amplitude

 based on thread ID

 Get new amplitude from

 ramp equation

GPU Hardware

• Non-coalesced access!

– Sinogram 0, index ~d0

– Sinogram 1, index ~d1

– Sinogram 2, index ~d2

– …

…

GPU Hardware

• Non-coalesced access!

– Sinogram 0, index ~d0

– Sinogram 1, index ~d1

– Sinogram 2, index ~d2

– …

• However:

– Accesses are 2D spatially local!

…

GPU Hardware

• Solution:

– Cache sinogram in texture memory!

• Read-only (un-modified once we load it)

• Ignore coalescing

• 2D spatial caching!

…

Summary/pseudocode

(input: X-ray sinogram)

Filter sinogram (Slide 46)

Set up 2D texture cache on sinogram (Lecture 10):

 Copy to CUDA array (2D)

 Set addressing mode (clamp)

 Set filter mode (linear, but won’t matter)

 Set no normalization

 Bind texture to sinogram

Calculate image backprojection (parallelize Slide 39)

• Result: 200-250x speedup! (or more)

• Result: 200-250x speedup! (or more)

Demo

• We use two python scripts to prepare the data
for the sinogram and to process the output.

• preprocess.py

– Simulated CT scanner

– Forward Radon Transform

• postprocess.py

– Produces image based on CT Reconstruction

Demo

The “1_input_mpl_falsecolor.png" file is the rendering of the image with
false color.

Demo

The "2_input_mpl_grayscale.png" file is the rendering of the image with
greyscale.

Demo

The "3_sinogram_as_image.png" file is the sinogram in an image format.
Each column is a line of radiation measurement.

Demo

The "5_recon_output.png" file is the reconstructed image.
The output image of your program should resemble this image.

Demo

More angles allow us to view the body density much more accurately.

10 angles vs 100 angles

Demo

