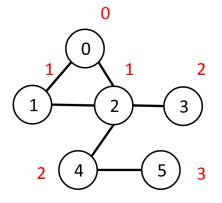
CS 179: GPU Programming

Lecture 11 / Homework 4

Breadth-First Search

- Given source vertex S:
 - Find min. #edges to reach every vertex from S
 - (Assume source is vertex 0)
- Sequential pseudocode:

```
let Q be a queue
Q.enqueue(source)
label source as discovered
source.value <- 0
while Q is not empty
v ← Q.dequeue()
for all edges from v to w in G.adjacentEdges(v):
    if w is not labeled as discovered
        Q.enqueue(w)
        label w as discovered, w.value <- v.value + 1</pre>
```



Alternate BFS algorithm

New sequential pseudocode:

```
(graph in "compact adjacency list" format)
Input: Va, Ea, source
Create frontier (F), visited array (X), cost array (C)
F <- (all false)
X <- (all false)
C <- (all infinity)
F[source] <- true
C[source] <- 0
while F is not all false:
                                           Parallelizable!
   for 0 \le i < |Va|:
      if F[i] is true:
         F[i] <- false</pre>
         X[i] <- true</pre>
         for Ea[Va[i]] \leq i < Ea[Va[i+1]]:
            if x[j] is false:
                C[i] <- C[i] + 1
                F[i] <- true</pre>
```

GPU-accelerated BFS

• CPU-side pseudocode:

Input: Va, Ea, source (graph in "compact adjacency list" format)
Create frontier (F), visited array (X), cost array (C)
F <- (all false)
X <- (all false)
C <- (all infinity)</pre>

```
F[source] <- true
C[source] <- 0
while F is not all false:
    call GPU kernel( F, X, C, Va, Ea )</pre>
```

Can represent boolean values as integers

• GPU-side kernel pseudocode:

if F[threadId] is true:

F[threadId] <- false
X[threadId] <- true
for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:
 if X[j] is false:
 C[j] <- C[threadId] + 1
 F[j] <- true</pre>

Texture Memory (and co-stars)

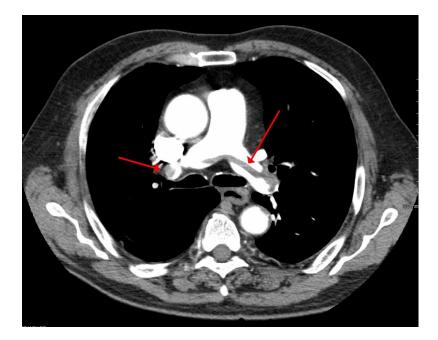
- Another type of memory system, featuring:
 - Spatially-cached read-only access
 - Avoid coalescing worries
 - Interpolation
 - (Other) fixed-function capabilities
 - Graphics interoperability

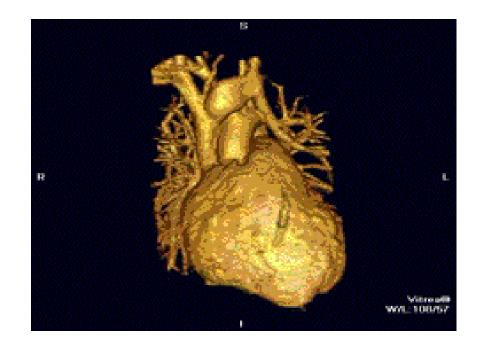
X-ray CT Reconstruction

Medical Imaging

• See inside people!

- Critically important in medicine today



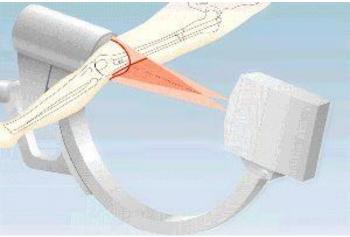


"SaddlePE" by James Heilman, MD - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:SaddlePE.PNG#/media/File:SaddlePE.PNG

"PAPVR". Licensed under CC BY 3.0 via Wikipedia http://en.wikipedia.org/wiki/File:PAPVR.gif#/media/File:PAPVR.gif

X-ray imaging (Radiography)

- "Algorithm":
 - Generate electromagnetic radiation
 - Measure radiation at the "camera"
- Certain tissues are more "opaque" to X-rays
- Like photography!



"Coude fp" by MB - Collection personnelle. Licensed under CC BY-SA 2.5 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Coude_fp.PNG#/media/File:Coude_fp.PNG

http://www.imaginis.com/xray/how-does-x-ray-imaginig-work

Radiography limitations

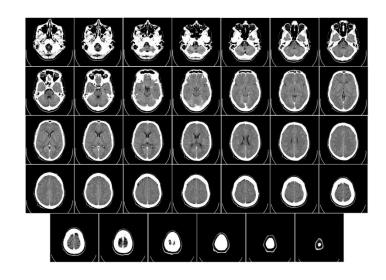
 Generates 2D image of 3D body

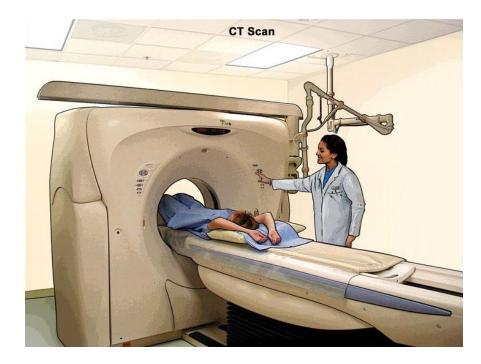
- What if we want a "slice" of 3D body?
 - Goal: 3D reconstruction! (from multiple slices)

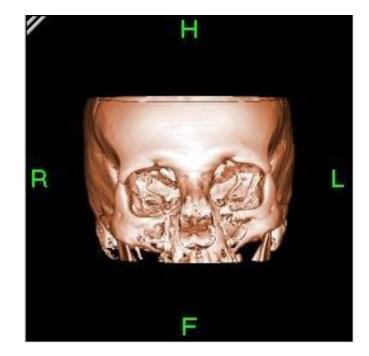
"Coude fp" by MB - Collection personnelle. Licensed under CC BY-SA 2.5 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Coude_fp.PNG#/media/File:Coude_fp.PNG

"Computed tomography of human brain - large" by Department of Radiology, Uppsala University Hospital. Uploaded by Mikael Häggström. - Radiology, Uppsala University Hospital. Brain supplied by Mikael Häggström. It was taken Mars 23, 2007. Licensed under CCO via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_-_large.png#/media/File:Computed_tomography_of_human_brain_-

VS.







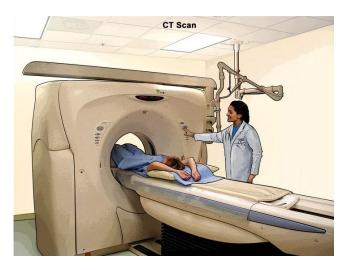
http://www.cancer.gov/

"Bonereconstruction" by Original uploader was Zgyorfi at en.wikipedia - Transferred from en.wikipedia; transferred to Commons by User:Common Good using CommonsHelper.. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

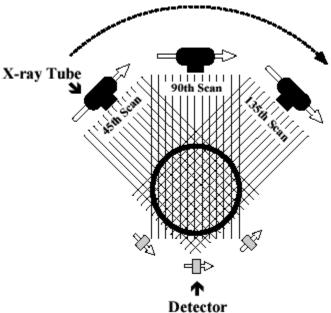
http://commons.wikimedia.org/wiki/File:Bonereconstruction.jpg#/media/File:Bonereconstruction.jpg

- Generate 2D "slice" using 3D imaging
 – New imaging possibilities!
- Reconstruction less straightforward





- "Algorithm" (per-slice):
 - Take *lots* of pictures at different angles
 - Each "picture" is a 1-D line
 - Reconstruct the many 1-D pictures into a 2-D image
- Harder, more computationally intensive!
 - 3D reconstruction requires multiple slices



http://www.thefullwiki.org/Basic_Physics_of_Nuclear_ Medicine/X-Ray_CT_in_Nuclear_Medicine

- X-ray CT (per-slice) performs a 2D X-ray transform (eq. to 2D Radon transform):
 - Suppose body density represented by $f(\vec{x})$ within 2D slice, $\vec{x} = (x, y)$
 - Assume linear attenuation of radiation
 - For each line L of radiation measured by detector:

$$I_{detect} = I_{emit} \int_{L} f = I_{emit} \int_{\mathbb{R}} f(\vec{x}_{0} + t\vec{\theta}_{L}) dt$$

• $\vec{\theta}_L$: a unit vector in direction of L

$$I_{detect} = I_{emit} \int_{L} f = I_{emit} \int_{\mathbb{R}} f(\vec{x}_{0} + t\vec{\theta}_{L}) dt$$

- Defined as Lebesgue integral non-oriented
 - Opposite radiation direction should have same attenuation!
 - Re-define as:

$$I_{detect} = I_{emit} \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}_L) |dt|$$

For each line L of radiation measured by detector:

$$I_{detect} = I_{emit} \int_{L} f = I_{emit} \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}_L) |dt|$$

- Define general X-ray transform (for all lines L in R²): $(Rf)(L) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}_L) |dt|$
 - Fractional values of attenuation
 - $-\vec{x}_0$ lies along L

• Define general X-ray transform:

$$(Rf)(L) = \int_{-\infty}^{\infty} f\left(\vec{x}_0 + t\vec{\theta}_L\right) |dt|$$

- Parameterize $\theta = (\cos \theta, \sin \theta)$

• Redefine as:

$$(Rf)(\vec{x}_0,\theta) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}) |dt|$$

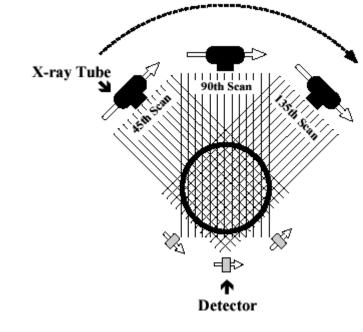
– Define for $\theta \in [0, 2\pi)$

$$(Rf)(\vec{x}_0,\theta) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}) |dt|$$

- Important properties:
 - Many \vec{x}_0 are redundant!
 - Symmetry: $Rf(\vec{x}_0, \theta) = Rf(\vec{x}_0, \theta + \pi)$
 - Can define for $\theta \in [0, \pi)$

- Redefined X-ray transform, $\theta \in [0, \pi)$: $(Rf)(\vec{x}_0, \theta) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}) |dt|$
- In reality:

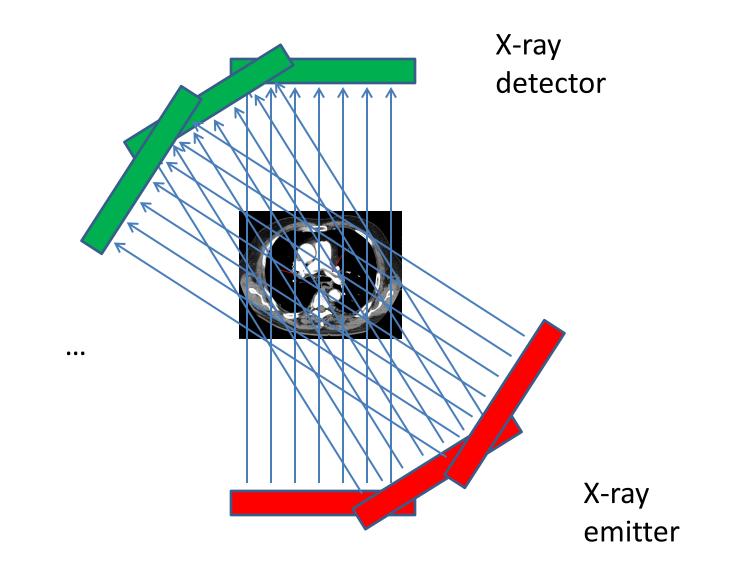
– Only defined for some θ !

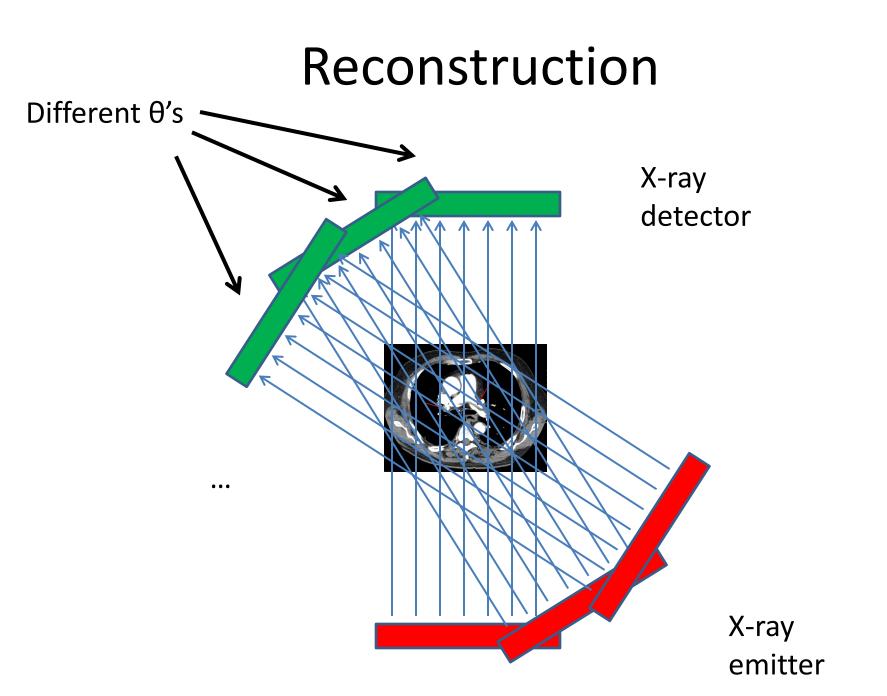


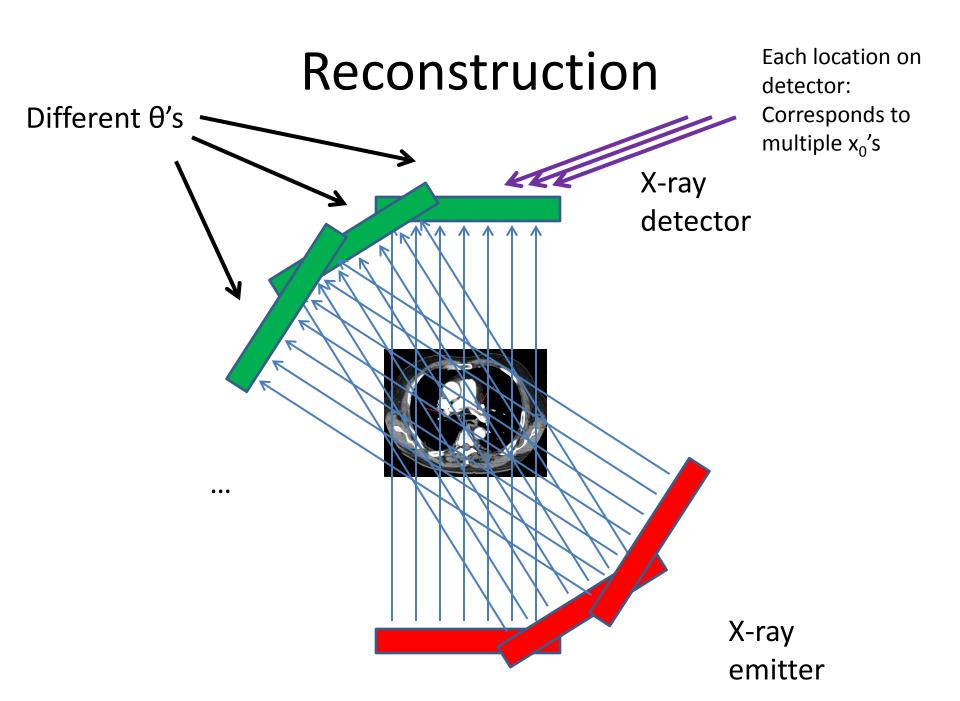
X-ray CT Reconstruction

- Given the results of our scan (the *sinogram*): $(Rf)(\vec{x}_0, \theta) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}) |dt|$
- Obtain the original data: ("density" of our body) f(x, y)
- In reality:
 - This is hard
 - We only scanned at certain (discrete) values of θ !
 - Consequence: Perfect reconstruction is impossible!

Reconstruction







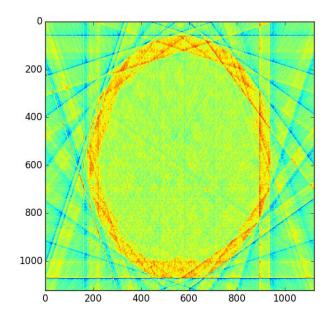
X-ray CT Reconstruction

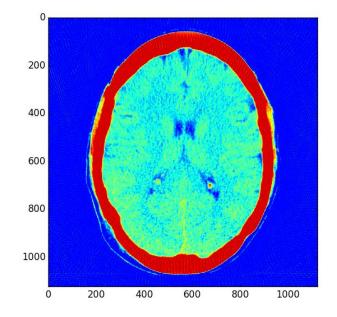
- Given the results of our scan (the *sinogram*): $(Rf)(\vec{x}_0, \theta) = \int_{-\infty}^{\infty} f(\vec{x}_0 + t\vec{\theta}) |dt|$
- Obtain the original data: ("density" of our body) f(x, y)
- In reality:
 - This is hard
 - We only scanned at certain (discrete) values of θ !
 - Consequence: Perfect reconstruction is impossible!

Imperfect Reconstruction

10 angles of imaging

200 angles of imaging





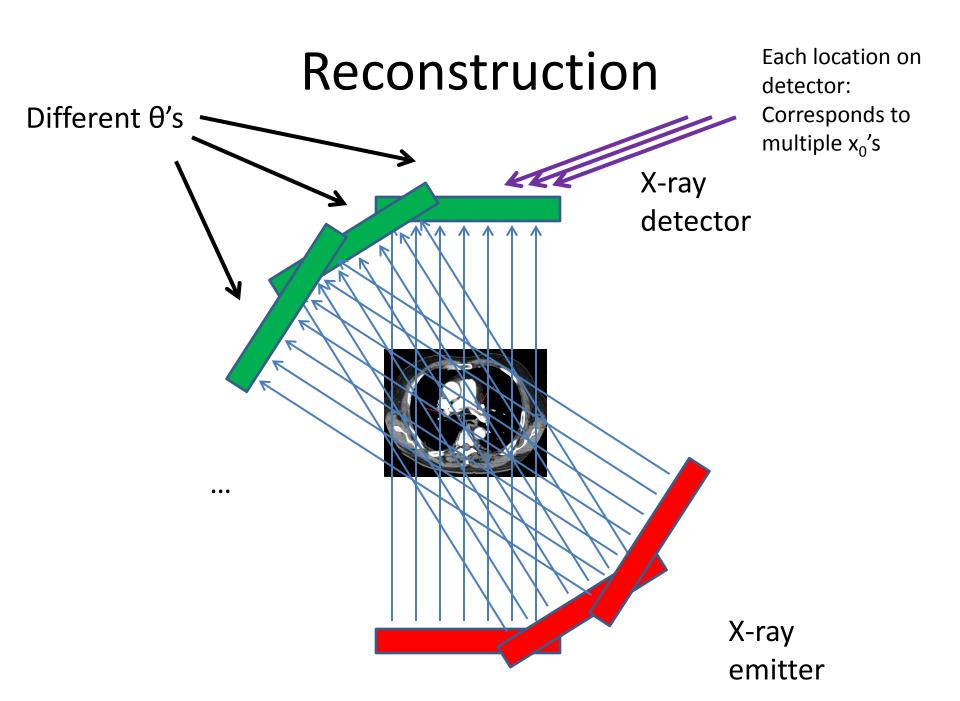
Reconstruction

- Simpler algorithm backprojection
 Not quite inverse Radon transform!
- Claim: Can reconstruct image as:

$$f_r(\vec{x}) = \sum_{\theta} (Rf)(\vec{x},\theta) = \sum_{\theta} \int_{-\infty}^{\infty} f\left(\vec{x} + t\vec{\theta}\right) |dt|$$

- (θ 's where X-rays are taken)

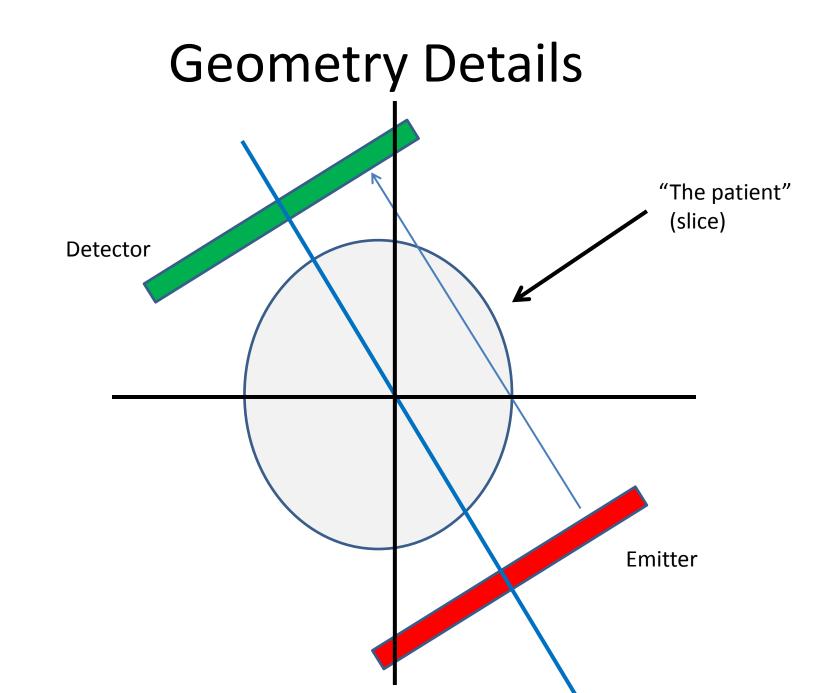
 In other words: To reconstruct point, sum measurement along every line passing through that point

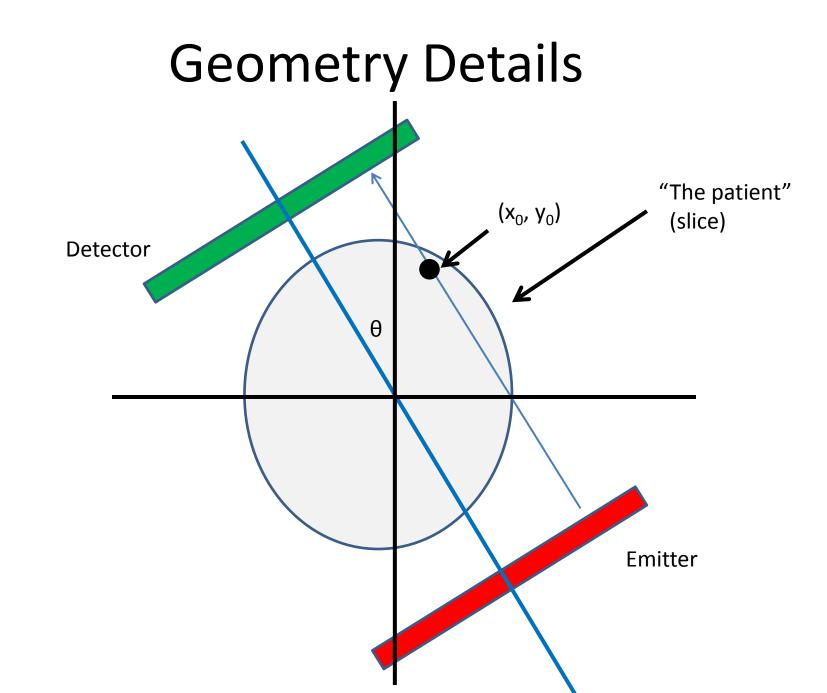


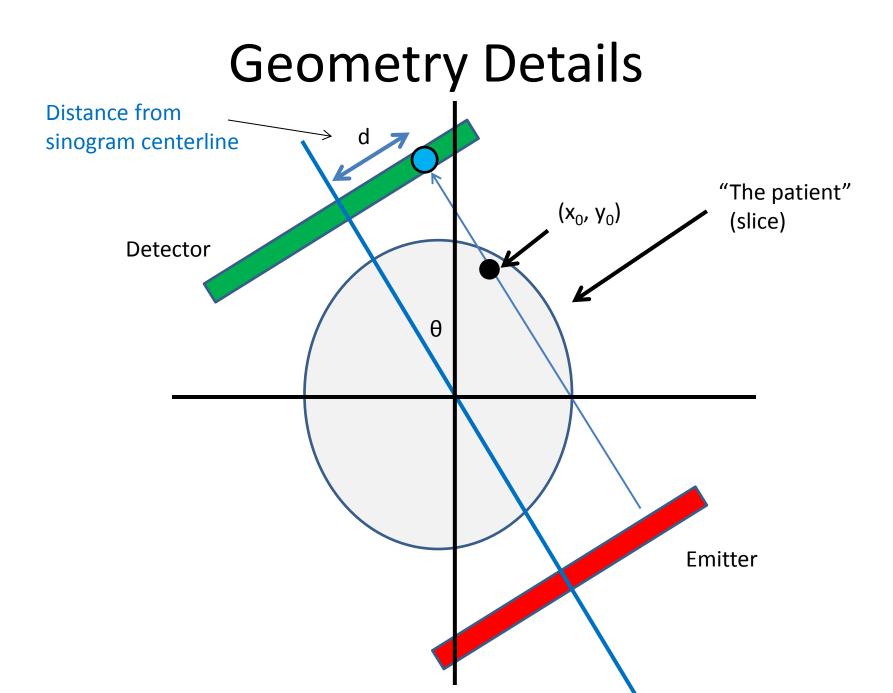
Geometry Details

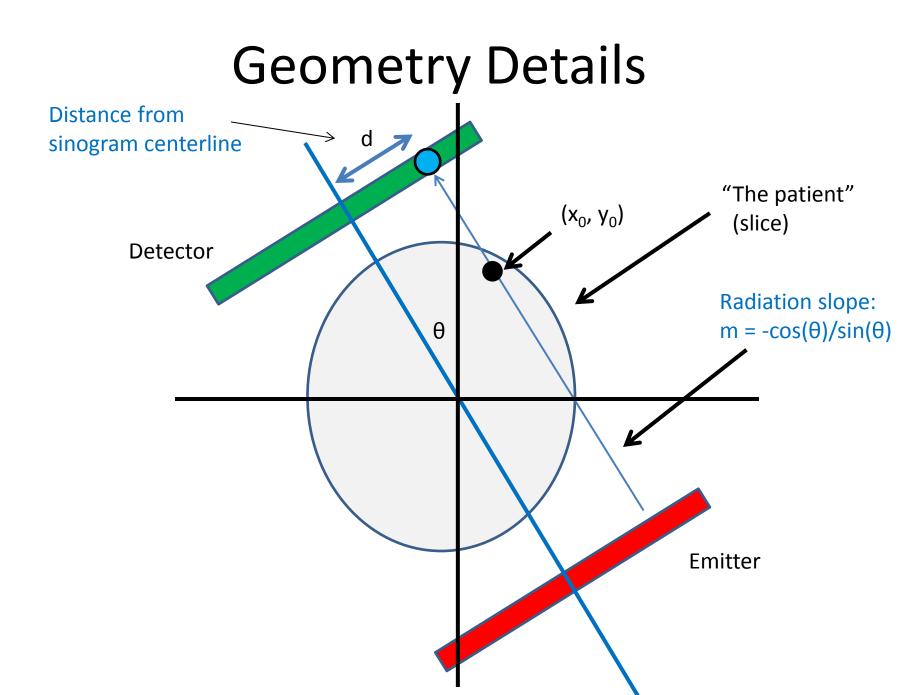
• For x₀, need to find:

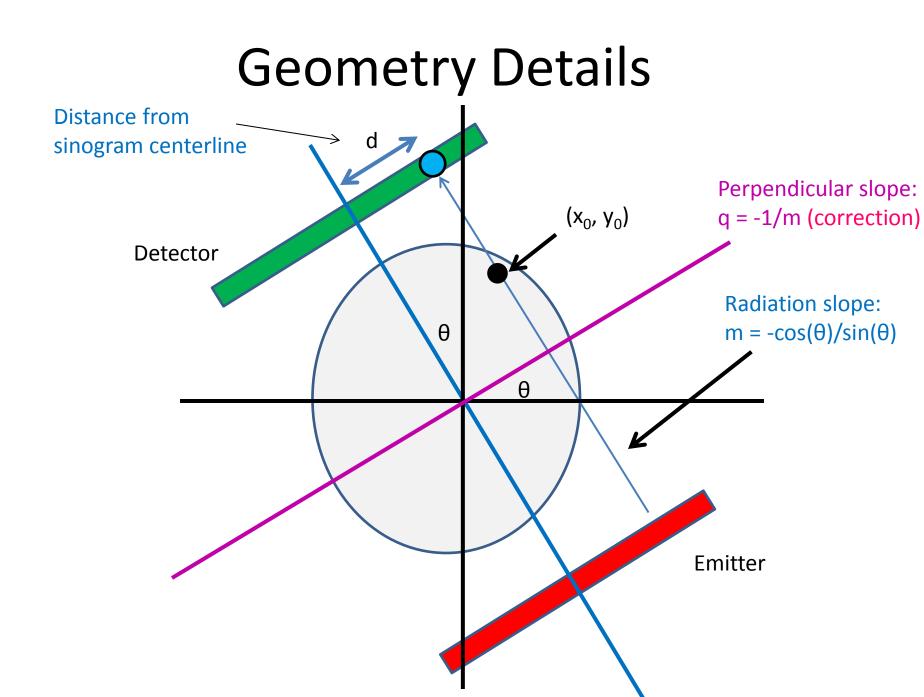
- At each θ , which radiation measurement corresponds to the line passing through x_0 ?

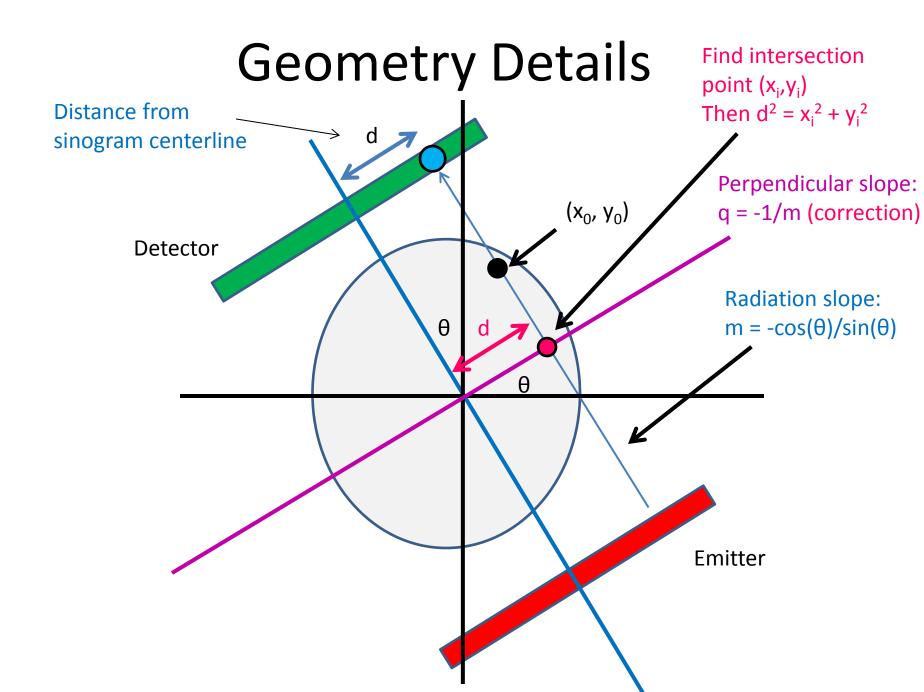












Intersection point

• Line 1: (point-slope)

$$(y_i - y_0) = m(\mathbf{x}_i - \mathbf{x}_0)$$

• Line 2:

Corrections
$$y_i = q x_i$$

• Combine and solve:

$$x_i = \frac{y_0 - mx_0}{q - m}, y_i = qx_i$$

Intersection point

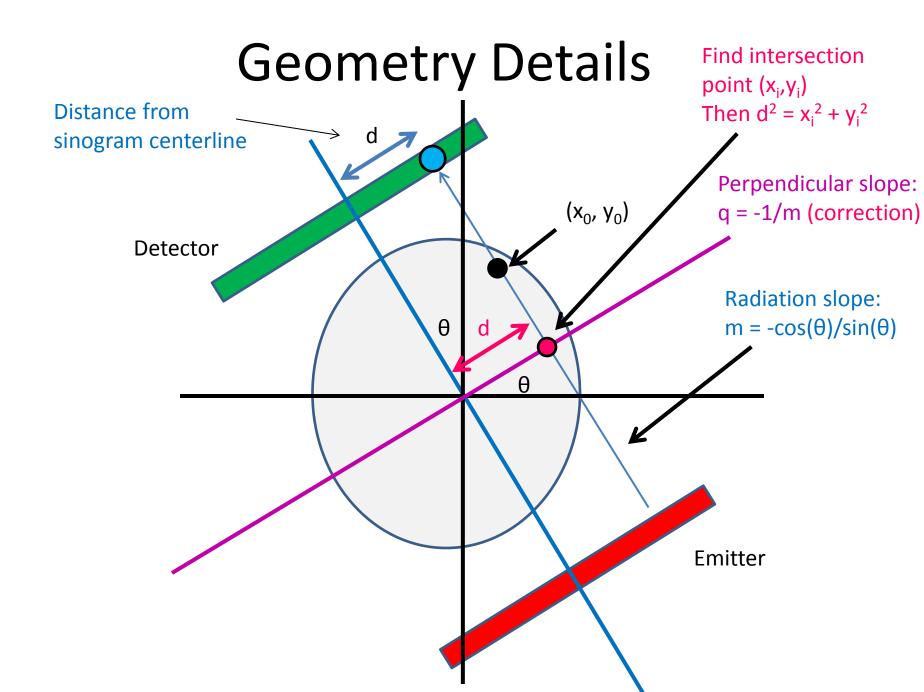
• Intersection point:

$$x_i = \frac{y_0 - mx_0}{q - m}, \qquad y_i = qx_i$$

Corrections

• Distance from measurement centerline:

$$d = \sqrt{x_i^2 + y_i^2}$$



Sequential pseudocode

(input: X-ray sinogram):
(allocate output image)

 $f_r(\vec{x}) = \sum_{\theta} (Rf)(\vec{x},\theta)$

for all y in image:	
for all x in image:	
for all	theta in sinogram:
Clarification: Remember not	calculate m from theta
to confuse geometric x,y	calculate x_i, y_i from m, -1/m
with pixel x,y!	calculate d from x_i, y_i
	image[x,y] += sinogram[theta, "distance"]
(0,0) geometrically is the	Correction/clarification:
center pixel of the image,	 d is the distance from the center of the
and (0,0) in pixel coordinates	sinogram – remember to center index
is the upper left hand corner.	appropriately
Image is indexed row-wise	 Use –d instead of d as appropriate (when -1/m

> 0 and x_i < 0, or if -1/m < 0 and x_i > 0

Sequential pseudocode

(input: X-ray sinogram):
(allocate output image)

$$f_r(\vec{x}) = \sum_{\theta} (Rf)(\vec{x}, \theta)$$

```
Parallelizable!
for all y in image:
    for all x in image:
        for all theta in sinogram:
            calculate m from theta
            calculate x_i, y_i from m, -1/m
            calculate d from x_i, y_i
(corrections/clarification -
            image[x,y] += sinogram[theta, "distance"]
see slide 37)
```

Sequential pseudocode

(input: X-ray sinogram):
(allocate output image)

$$f_r(\vec{x}) = \sum_{\theta} (Rf)(\vec{x}, \theta)$$

For this assignment, only parallelize w/r/to x, y

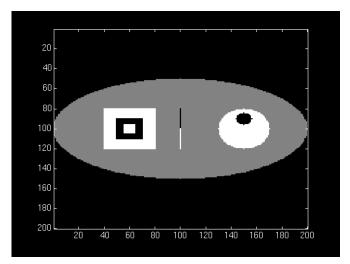
```
for all y in image:
    for all x in image:
        for all theta in sinogram:
        for all theta in sinogram:
            calculate m from theta
            calculate x_i, y_i from m, -1/m
            calculate d from x_i, y_i
        image[x,y] += sinogram[theta, "distance"]
see slide 37)
```

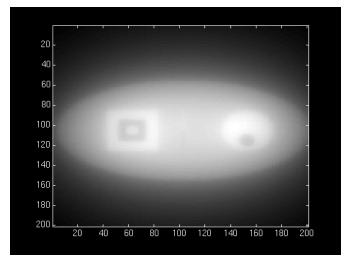
Cautionary notes

- y in an image is opposite of y geometrically!
 (Graphics/computing convention)
- Edge cases (divide-by-0):
 - $-\theta = 0$:
 - $d = x_0$
 - $-\theta = \pi/2$:
 - $d = y_0$

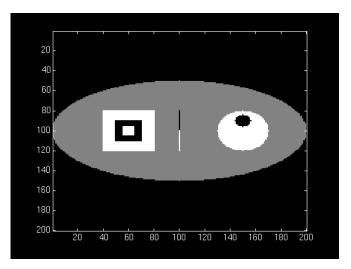
Original

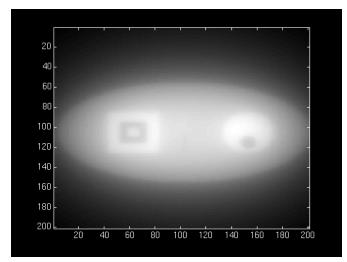
Reconstruction





- "Backprojection blur"
 - Similar to low-pass
 property of SMA (Week 1)
 - We need an "anti-blur"!(opposite of Homework 1)

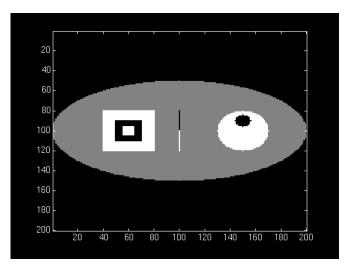


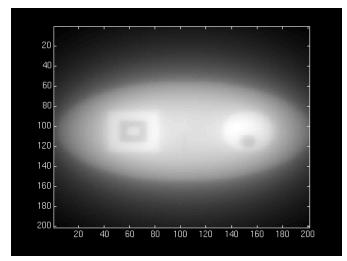


• Solution:

– A "high-pass filter"

- We can get frequency info in parallelizable manner!
 - (FFT, Week 3)

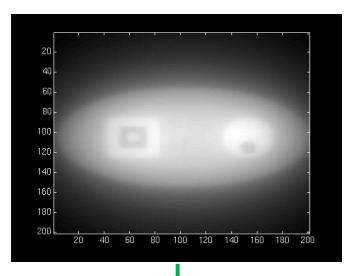


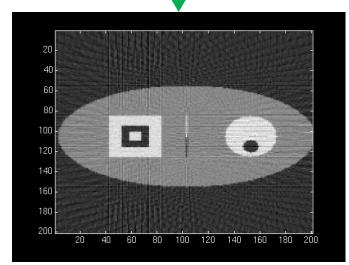


• Solution:

– A "high-pass filter"

- We can get frequency info in parallelizable manner!
 - (FFT, Week 3)



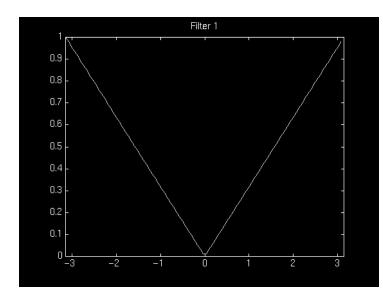


High-pass filtering

- Instead of filtering on image (2D HPF):
 - Filter on sinogram! (1D HPF)
 - (Equivalent reconstruction by linearity)
 - Use cuFFT batch feature!

We'll use a "ramp filter"

 Retained amplitude is
 linear function of frequency



• CPU-side:

(input: X-ray sinogram):

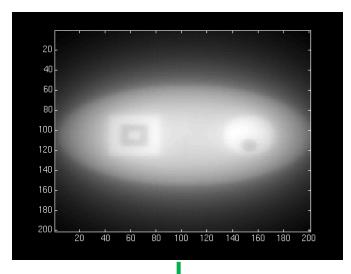
calculate FFT on sinogram using cuFFT call filterKernel on freq-domain data Calculate IFFT on freq-domain data -> get new sinogram

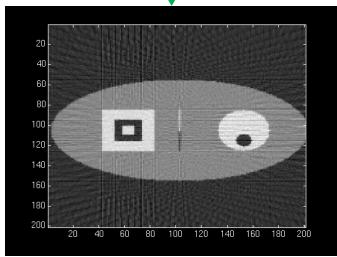
• GPU-side:

filterKernel:

Select specific freq-amplitude based on thread ID

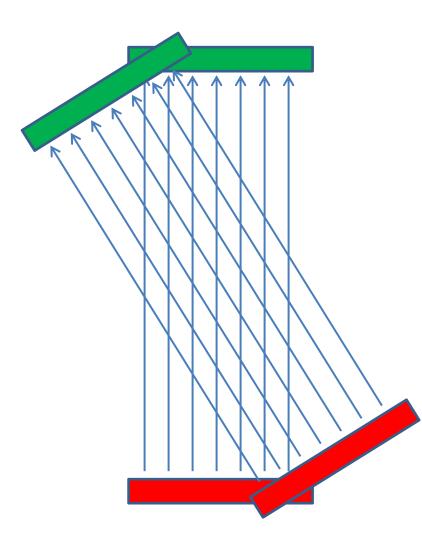
Get new amplitude from ramp equation





GPU Hardware

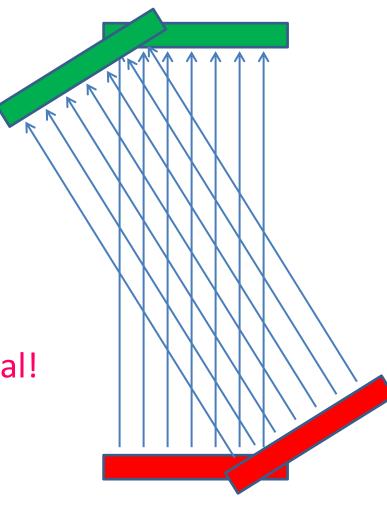
- Non-coalesced access!
 - Sinogram 0, index ~d₀
 - Sinogram 1, index ~d₁
 - Sinogram 2, index ~d₂



GPU Hardware

- Non-coalesced access!
 - Sinogram 0, index ~d₀
 - Sinogram 1, index ~d₁
 - Sinogram 2, index ~d₂
- However:

– Accesses are 2D spatially local!



GPU Hardware

- Solution:
 - Cache sinogram in texture memory!
 - Read-only (un-modified once we load it)
 - Ignore coalescing
 - 2D spatial caching!

Summary/pseudocode

(input: X-ray sinogram)

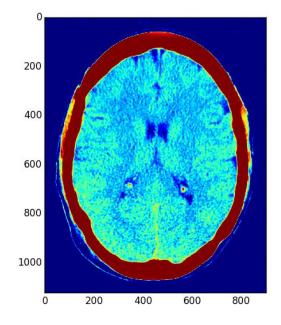
Filter sinogram (Slide 46)

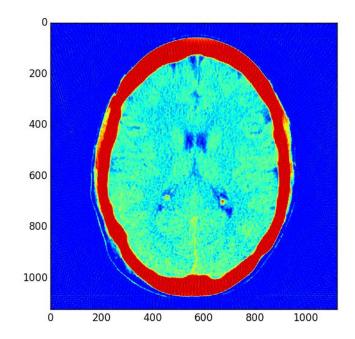
Set up 2D texture cache on sinogram (Lecture 10): Copy to CUDA array (2D) Set addressing mode (clamp) Set filter mode (linear, but won't matter) Set no normalization Bind texture to sinogram

Calculate image backprojection (parallelize Slide 39)

• Result: 200-250x speedup! (or more)

• Result: 200-250x speedup! (or more)





Admin

- This topic is harder than before!
 - Lots of information
 - I may have missed something
 - If there's anything unclear, let us know
 - I can (and likely will) make additional slides/explanatory materials

Admin

- C/CUDA code should work on all machines
- Pre/post-processing:
 - Python scripts preprocess.py, postprocess.py
 - (To run Python scripts: "python <script>.py")

- Either:
 - Use haru
 - Install python, (optionally pip) -> numpy, scipy, matplotlib, scikit-image

Resources

- Imaging methods:
 - <u>X-Ray CT in Nuclear Medicine</u>
 - <u>CT Image Reconstruction (Peters, at AAPM)</u>
 - <u>Elements of Modern Signal Processing (Candes, at</u> <u>Stanford)</u>
 - Proof that our algorithm works!