CS 179: GPU Programming

Lecture 9 / Homework 3

Recap

- Some algorithms are "less obviously parallelizable":
- Reduction
- Sorts
- FFT (and certain recursive algorithms)

Parallel FFT structure (radix-2)

cuFFT 1D example

```
#define NX 262144
cufftComplex *data_host
    = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
cufftComplex *data_back
    = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
// Get data...
cufftHandle plan;
cufftComplex *data1;
cudaMalloc((void**) &datal, sizeof(cufftComplex)*NX);
cudaMemcpy(datal, data_host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);
/* Create a 1D FFT plan. */
int batch = 1; // Number of transforms to run
cufftPlan1d(&plan, NX, CUFFT_C2C, batch);
/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);
/* Inverse transform in place. */ Correction:
cufftExecC2C(plan, data1, data1, CUFFT_INVERSE);
cudaMemcpy(data_back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost); when finished with

\section*{Today}
- Homework 3
- Large-kernel convolution

\section*{Systems}
- Given input signal(s), produce output signal(s)


\section*{LTI system review (Week 1)}
- "Linear time-invariant" (LTI) systems
- Lots of them!
- Can be characterized entirely by "impulse response" \(h[n]\)
- Output given from input by convolution:
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]

\section*{Parallelization}
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Convolution is parallelizable!
- Sequential pseudocode (ignoring boundary conditions):
```

(set all y[i] to 0)
For (i from 0 through x.length - 1)
for (j from 0 through h.length - 1)
y[i] += (appropriate terms from x and h)

```

\section*{A problem...}
- This worked for small impulse responses
- E.g. h[n], \(0 \leq n \leq 20\) in HW 1
- Homework 1 was "small-kernel convolution":
- (Vocab alert: Impulse responses are often called "kernels"!)

\section*{A problem...}
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Sequential runtime: \(O\left(n^{*} m\right)\)
- ( \(n\) : size of \(x\) )
- (m: size of h)
- Troublesome for large \(m\) ! (i.e. large impulse responses)
```

(set al1 y[i] to 0)
For (i from 0 through x.length - 1)
for (j from 0 through h.length - 1)
y[i] += (appropriate terms from x and h)

```

\section*{DFT/FFT}
- Same problem with Discrete Fourier Transform!
\[
X_{k} \stackrel{\text { def }}{=} \sum_{n=0}^{N-1} x_{n} \cdot e^{-2 \pi i k n / N}, \quad k \in \mathbb{Z}
\]
- Successfully optimized and GPU-accelerated!
\(-O\left(n^{2}\right)\) to \(O(n \log n)\)
- Can we do the same here?

\section*{"Circular" convolution}
- "equivalent" of convolution for periodic signals

\section*{"Circular" convolution}
- Linear convolution:
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Circular convolution:
\[
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
\]
x0 x1 x2 x3
h0 h1 0

\section*{Example:}
- \(x[0 . .3], \mathrm{h}[0.1\) ]
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Linear convolution:
\[
y[0]=x[0] h[0]
\]
x0 x1 x2 x3
h0 h1 0

\section*{Example:}
- x[0..3], h[0..1]
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Linear convolution:
\[
\begin{array}{llllllll}
y[0] & =x[0] h[0] & 0 & \text { ox0 x1 x2 x3 } & 0 & 0 \\
y[1]=x[0] h[1]+x[1] h[0] & 0 & \text { oh1 h0 } & 0 & 0 & 0 & 0
\end{array}
\]
\(x 0 \times 1 \times 2 \times 3\)
h0 h1 \(0 \quad 0\)

\section*{Example:}
- \(x[0 . .3], \mathrm{h}[0.1\) ]
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
- Linear convolution:
\[
\begin{aligned}
& y[0]=x[0] \mathrm{h}[0] \\
& y[1]=x[0] \mathrm{h}[1]+x[1] \mathrm{h}[0] \\
& \mathrm{y}[2]=\mathrm{x}[1] \mathrm{h}[1]+\mathrm{x}[2] \mathrm{h}[0] \\
& \mathrm{y}[3]=\mathrm{x}[2] \mathrm{h}[1]+\mathrm{x}[3] \mathrm{h}[0]
\end{aligned}
\]

0 ox0 x1 x2 x3 oo
0 o oh1 h0 000
x0 x1 x2 x3
h0 h1 \(0 \quad 0\)

\section*{Example:}
- \(\mathrm{X}[0 . .3], \mathrm{h}[0.1] \quad y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]\)
- Linear convolution:
\[
\begin{aligned}
& y[0]=x[0] \mathrm{h}[0] \\
& \mathrm{y}[1]=\mathrm{x}[0] \mathrm{h}[1]+\mathrm{x}[1] \mathrm{h}[0] \\
& \mathrm{y}[2]=\mathrm{x}[1] \mathrm{h}[1]+\mathrm{x}[2] \mathrm{h}[0] \\
& \mathrm{y}[3]=\mathrm{x}[2] \mathrm{h}[1]+\mathrm{x}[3 \mathrm{~h}[0] \\
& \mathrm{y}[4]=\mathrm{x}[3] \mathrm{h}[1]+\mathrm{x}[4] \mathrm{h}[0]
\end{aligned}
\]
\(\mathrm{x} 0 \times 1 \times 2 \mathrm{x} 3\)
h0 h1 0
- x[0..3], h[0..1]
- Linear convolution:

\section*{Example:}
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
\[
\begin{aligned}
& y[0]=x[0] h[0] \\
& y[1]=x[0] h[1]+x[1] h[0] \\
& y[2]=x[1] h[1]+x[2] h[0] \\
& y[3]=x[2] h[1]+x[3] h[0] \\
& y[4]=x[3] h[1]+x[4] h[0]
\end{aligned}
\]
\(0 \quad \mathbf{0 x 0} \mathbf{x 1} \mathbf{x 2} \mathbf{x 3} \quad 0 \quad 0\) oh1 h0 \(0 \quad 0 \quad 0 \quad 0 \quad 0\)
- Circular convolution: \(y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]\)
\[
\begin{array}{lll}
y[0]=x[0] h[0]+x[3] h[1]+x[2] h[2]+x[3] h[1] & \mathbf{x 0} \mathbf{x 1} \mathbf{x 2} \mathbf{x 3} \\
y[1]=x[0] h[1]+x[1] h[0]+x[2] h[3]+x[3] h[2] & \mathbf{h 0} \quad \mathbf{o} \text { oh1 } \\
y[2]=x[1] h[1]+x[2] h[0]+x[3] h[3]+x[0] h[2] & & \\
y[3]=x[2] h[1]+x[3] h[0]+x[0] h[3]+x[1] h[2] & &
\end{array}
\]

\section*{Circular Convolution Theorem*}
\[
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
\]
- Can be calculated by: IFFT( FFT(x) .* FFT(h) )
- i.e.
\[
\begin{aligned}
& \vec{X}=F F T(\vec{x}) \\
& \vec{H}=F F T(\vec{h})
\end{aligned}
\]
- For all i:
\[
Y_{i}=X_{i} H_{i}
\]
- Then:
\[
\vec{y}=I F F T(\vec{Y})
\]

\section*{Circular Convolution Theorem*}
\[
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
\]
- Can be calculated by: IFFT( FFT(x) .*FFT(h) )
- i.e.
\[
\begin{aligned}
\vec{X} & =F F T(\vec{x}) & & \mathrm{O}(\mathrm{n} \log \mathrm{n}) \text { Assumen } \mathrm{n}>\mathrm{m} \\
\vec{H} & =F F T(\vec{h}) & & \mathrm{O}(\mathrm{~m} \log \mathrm{~m})
\end{aligned}
\]
- For all i:
\[
\begin{equation*}
Y_{i}=X_{i} H_{i} \tag{n}
\end{equation*}
\]

Total:
O( \(n \log n\) )
- Then:
\[
\vec{y}=\operatorname{IFFT}(\vec{Y}) \quad \mathrm{O}(\mathrm{n} \log \mathrm{n})
\]
- \(\mathrm{x}[\mathrm{n}]\) and \(\mathrm{h}[\mathrm{n}]\) are different lengths?
- How to linearly convolve using circular convolution?

\section*{Padding}
- \(\mathrm{x}[\mathrm{n}]\) and \(\mathrm{h}[\mathrm{n}]\) - presumed zero where not defined
- Computationally: Store \(\mathrm{x}[\mathrm{n}]\) and \(\mathrm{h}[\mathrm{n}]\) as larger arrays
- Pad both to at least \(x\).length + h.length - 1

\section*{Example: (Padding)}
- \(x[0 . .3], h[0 . .1]\)
- Linear convolution:
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
\[
\begin{aligned}
y[0] & =x[0] h[0] \\
y[1] & =x[0] h[1]+x[1] h[0] \\
y[2] & =x[1] \mathrm{h}[1]+\mathrm{x}[2] \mathrm{h}[0] \\
\mathrm{y}[3] & =\mathrm{x}[2] \mathrm{h}[1]+\mathrm{x}[3] \mathrm{h}[0] \\
\mathrm{y}[4] & =\mathrm{x}[3] \mathrm{h}[1]+\mathrm{x}[4] \mathrm{h}[0]
\end{aligned}
\]
- Circular convolution: \(y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]\)
\[
\begin{aligned}
& y[0]=x[0] h[0]+x[3] h[1]+x[2] h[2]+x[3] h[1] \\
& y[1]=x[0] h[1]+x[1] h[0]+x[2] h[3]+x[3] h[2] \\
& y[2]=x[1] h[1]+x[2] h[0]+x[3] h[3]+x[0] h[2] \\
& y[3]=x[2] h[1]+x[3] h[0]+x[0] h[3]+x[1] h[2]
\end{aligned}
\]

\section*{Example: (Padding)}
- \(x[0 . .3], h[0 . .1]\)
- Linear convolution:
\[
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]
\[
\begin{aligned}
y[0] & =x[0] h[0] \\
y[1] & =x[0] \mathrm{h}[1]+\mathrm{x}[1] \mathrm{h}[0] \\
\mathrm{y}[2] & =\mathrm{x}[1] \mathrm{h}[1]+\mathrm{x}[2] \mathrm{h}[0] \\
\mathrm{y}[3] & =\mathrm{x}[2] \mathrm{h}[1]+\mathrm{x}[3] \mathrm{h}[0] \\
\mathrm{y}[4] & =\mathrm{x}[3] \mathrm{h}[1]+\mathrm{x}[4] \mathrm{h}[0]
\end{aligned}
\]
- Circular convolution: \(\left.y^{y[n]}=\sum_{k=0}^{N-1} x[k] h[n-k) \bmod N\right]\)
\[
\begin{aligned}
& y[0]=x[0] h[0]+x[1] h[4]+x[2] h[3]+x[3] h[2]+x[4] h[1] \\
& y[1]=x[0] h[1]+x[1] h[0]+x[2] h[4]+x[3] h[3]+x[4] h[2] \\
& y[2]=x[1] h[1]+x[2] h[0]+x[3] h[4]+x[4] h[3]+x[0] h[2] \\
& y[3]=x[2] h[1]+x[3] h[0]+x[4] h[4]+x[0] h[3]+x[1] h[2] \\
& y[4]=x[3] h[1]+x[4] h[0]+x[0] h[4]+x[1] h[3]+x[2] h[2]
\end{aligned}
\]

\section*{Summary}
- Alternate algorithm for large impulse response convolution!
- Serial: O(n log n) vs. O(mn)
- Small vs. large m determines algorithm choice
- Runtime does "carry over" to parallel situations (to some extent)

\section*{Homework 3, Part 1}
- Implement FFT ("large-kernel") convolution
- Use cuFFT for FFT/IFFT (if brave, try your own)
- Use "batch" variable to save FFT calculations

Correction: Good practice in general, but results in poor performance on Homework 3
- Don't forget padding
- Complex multiplication kernel:
- Multiply the FFT values pointwise!

\section*{Complex numbers}
- cufftComplex: cuFFT complex number type
- Example usage:
```

cufftComplex a;
a.x = 3; // Real part
a.y = 4; // Imaginary part

```
- Complex Multiplication:
\[
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
\]

\section*{Homework 3, Part 2}
- For a normalized Gaussian filter, output values cannot be larger than the largest input
- Not true in general



\section*{Normalization}
- Amplitudes must lie in range \([-1,1]\)
- Normalize s.t. maximum magnitude is 1 (or \(1-\varepsilon\) )
- How to find maximum amplitude?

\section*{Reduction}
- This time, maximum (instead of sum)
- Lecture 7 strategies
- "Optimizing Parallel Reduction in CUDA" (Harris)


\section*{Homework 3, Part 2}
- Implement GPU-accelerated normalization
- Find maximum (reduction)
- The max amplitude may be a negative sample
- Divide by maximum to normalize

\section*{(Demonstration)}
- Rooms can be modeled as LTI systems!

\section*{Other notes}
- Machines:
- Normal mode: haru, mako, mx, minuteman
- Audio mode: haru, mako
- Due date:
- Wednesday (4/20), 3 PM```

