CS 179: GPU

 Programming Lecture 7
Week 3

- Goals:
- More involved GPU-accelerable algorithms
- Relevant hardware quirks
- CUDA libraries

Outline

- GPU-accelerated:
- Reduction
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Elementwise Addition

Problem: $C[i]=A[i]+B[i]$

- CPU code:

```
float *C = mal1oc(N *
sizeof(float));
for (int i = 0; i < N; i++)
    C[i] = A[i] + B[i];
```

- GPU code:
// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x; while (thread_index < N) \{
C[thread_index] = A[thread_index] + B[thread_index]; thread_index += blockDim.x * gridDim.x;
\}

Reduction Example Problem: Sum of Array

- CPU code:

```
float sum = 0.0;
for (int i = 0; i < N; i++)
    sum += A[i];
```

- GPU "Code":
// assign, allocate, initialize device and host memory pointers
// create threads and assign indices for each thread
// assign each thread a specific region to get a sum over
// wait for all threads to finish running (_ syncthreads;)
// combine all thread sums for final solution

Naïve Reduction

Problem: Sum of Array

- Serial Recombination causes speed reduction with GPUs, especially with higher number of threads
- GPU must use atomic functions for mutex
- atomicCAS
- atomicAdd

```
_device__ double atomicAdd(double* address, double val)
unsigned long long int* address_as_ull =
                            (unsigned long long int*)address;
    unsigned long long int old = *address_as_ull, assumed;
    do {
        assumed = old;
        old = atomicCAS(address_as_ull, assumed,
                            __double_as_longlong(val +
                            __longlong_as_double(assumed)));
    // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
    } while (assumed != old);
    return _llonglong_as_double(old);
```


Naive Reduction

- Suppose we wished to accumulate our results...

```
_global__ void
cudaSum_atomic_kernel(const float* const inputs,
                unsigned int numberOfInputs,
                    const float* const c,
                        unsigned int polynomialOrder,
                        float* output) {
    //set inputIndex to initial thread index...
    float partial_sum = 0.0;
    while (inputIndex < numberOfInputs) {
    //calculate polynomial value at inputs[inputIndex] and
    //add it to the partial sum...
        //increment input index to the next value...
    }
    output += partial_sum
```


Naive Reduction

- Suppose we wished to accumulate our results...

```
_global__ void
cudaSum_atomic_kernel(const float* const inputs,
                        unsigned int numberOfInputs,
                        const float* const c,
                        unsigned int polynomialOrder,
                            float* output) {
    //set inputIndex to initial thread index...
    float partial_sum = 0.0;
    while (inputIndex < numberOfInputs) {
        //calculate polynomial value at inputs[inputIndex] and
        //add it to the partial sum...
        //increment input index to the next value...
    }
    output += partial_sum
Thread-unsafe!
```


Naive (but correct) Reduction

```
_global__ void
cudaSum_atomic_kernel(const float* const inputs,
                                    unsigned int numberOfInputs,
                                    const float* const c,
                                    unsigned int polynomialOrder,
                                    float* output) {
    //set inputIndex to initial thread index...
    float partial_sum = 0.0;
    while (inputIndex < numberOfInputs) {
        //calculate polynomial value at inputs[inputIndex] and
        //add it to the partial sum...
        //increment input index to the next value...
    }
    atomicAdd(output, partial_sum);
```


GPU threads in naive reduction

Shared memory accumulation

```
global void
cudaSum_linear_kernel(const float* const inputs, unsigned int numberOfInputs, const float* const \(c\), unsigned int polynomialOrder, float * output) \{
extern __shared__ float partial_outputs[]; //calculate partial_sum as before...
//but this time, store the result in the partial_outputs[threadIndex]...
//Make all threads in the block finish before continuing! syncthreads();
```


Shared memory accumulation (2)

```
//Use the first thread in the block to accumulate the results
//of the other threads in said block
if (threadIdx.x == 0) {
    for (unsigned int threadIndex = 1; threadIndex < blockDim.x;
            ++threadIndex) {
        //Accumulate all the other partial sums into thread 0's
        //partial sum
        partial_sum += partial_outputs[threadIndex];
    }
    //Now we finally accumulate
    atomicAdd(output, partial_sum);
}
```


"Binary tree" reduction

"Binary tree" reduction

"Binary tree" reduction

- Warp Divergence!
- Odd threads won't even execute

Non-divergent reduction

Non-divergent reduction

- Shared Memory Bank Conflicts!
- 1st iteration: 2-way,
- 2nd iteration: 4-way (!), ...

Sequential addressing

Sequential Addressing Automatically Resolves Bank Conflict Problems

Reduction

- More improvements possible
- "Optimizing Parallel Reduction in CUDA" (Harris)
- Code examples!
- Moral:
- Different type of GPU-accelerized problems
- Some are "parallelizable" in a different sense
- More hardware considerations in play

Outline

- GPU-accelerated:
- Reduction
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Prefix Sum

- Given input sequence x[n], produce sequence

$$
\begin{aligned}
& \qquad y[n]=\sum_{k=0}^{n} x[k] \\
& - \text { e.g. } \mathrm{x}[\mathrm{n}]=(1,2,3,4,5,6) \\
& ->\mathrm{y}[\mathrm{n}]=(1,3,6,10,15,21)
\end{aligned}
$$

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

Prefix Sum

- Given input sequence $x[n]$, produce sequence

$$
\left.\begin{array}{r}
y[n]=\sum_{k=0}^{n} x[k] \\
- \text { e.g. } \mathrm{x}[\mathrm{n}]=(1,1,1,1,1,1,1) \\
-\mathrm{y}[\mathrm{n}]=(1,2,3,4,5,6,7) \\
-\mathrm{e.g.} \mathrm{x}[\mathrm{n}]=(1,2,3,4,5,6) \\
\rightarrow \mathrm{y}[\mathrm{n}]
\end{array}\right)(1,3,6,10,15,21) .
$$

Prefix Sum

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

- Is it parallelizable? Is it GPU-accelerable?
- Recall:
$-y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)]$
" Easily parallelizable!
$-y[n]=c \cdot x[n]+(1-c) \cdot y[n-1]$
" Not so much

Prefix Sum

- Recurrence relation:

$$
y[n]=y[n-1]+x[n]
$$

- Is it parallelizable? Is it GPU-accelerable?
- Goal:
- Parallelize using a "reduction-like" strategy

Prefix Sum sample code (up-sweep)

$[1,3,3,10,5,11,7,36]$
$[1,3,3,10,5,11,7,26]$
$[1,3,3,7,5,11,7,15]$
Original array
$[1,2,3,4,5,6,7,8]$
for $d=0$ to $\left(\log _{2} n\right)-1$ do

$$
\begin{aligned}
& \text { for all } k=0 \text { to } n-1 \text { by } 2^{d+1} \text { in parallel do } \\
& x\left[k+2^{d+1}-1\right]=x\left[k+2^{d}-1\right]+x\left[k+2^{d}\right]
\end{aligned}
$$

We want:
[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum sample code (down-sweep)

Original: $[1,2,3,4,5,6,7,8]$
$[1,3,3,10,5,11,7,36]$
$[1,3,3,10,5,11,7,0]$
$[1,3,3,0,5,11,7,10]$
$x[n-1]=0$
for $d=\log _{2}(n)-1$ down to 0 do
$[1,0,3,3,5,10,7,21]$
for all $k=0$ to $n-1$ by $2^{d}+1$ in parallel do

$$
\begin{aligned}
& t=x\left[k+2^{d}-1\right] \\
& x\left[k+2^{d}-1\right]=x\left[k+2^{d}\right] \\
& x\left[k+2^{d}\right]=t+x\left[k+2^{d}\right]
\end{aligned}
$$

Final result
[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum (Up-Sweep)

Use __syncthreads() before proceeding!

Prefix Sum (Down-Sweep)

Use __syncthreads() before proceeding!

Prefix sum

- Bank conflicts galore!
- 2-way, 4-way, ...

Prefix sum

- Bank conflicts!

$$
\begin{aligned}
& \text { - 2-way, 4-way, ... } \\
& \text { - Pad addresses! }
\end{aligned}
$$

Offset $=\mathbf{2}$. Padding addresses every 16 elements removes bank conflicts

Padding increment: | C | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |

Prefix Sum

-- See Link for a More
In-Depth Explanation of Up-Sweep and Down-
Sweep

- Why does the prefix sum matter?

Outline

- GPU-accelerated:
- Reduction
- Prefix sum
- Stream compaction
- Sorting (quicksort)

Stream Compaction

- Problem:
- Given array A, produce subarray of A defined by boolean condition
- e.g. given array:

- Produce array of numbers >3

Stream Compaction

- Given array A:

2	5	1	4	6	3

- GPU kernel 1: Evaluate boolean condition,
- Array M: 1 if true, 0 if false

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

- GPU kernel 2: Cumulative sum of M (denote S)

0	1	1	2	3	3

- GPU kernel 3: At each index,
- if $M[i d x]$ is 1 , store $A[i d x]$ in output at position (S[idx] - 1)

5	4	6

Outline

- GPU-accelerated:
- Reduction
- Prefix sum
- Stream compaction
- Sorting (quicksort)

GPU-accelerated quicksort

- Quicksort:
- Divide-and-conquer algorithm
- Partition array along chosen pivot point

3	7	8	5	2	1	9	5	4

- Pseudocode:

```
quicksort(A, lo, hi):
    if lo < hi:
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
```

| 3 | 7 | 8 | 4 | 2 | 1 | 9 | 5 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	4	2	7	8	1	9	5	5

3	4	2	1	5	7	9	8	5

3	4	2	1	5	5	9	8	7

GPU-accelerated partition

- Given array A:

2	5	1	4	6	3

- Choose pivot (e.g. 3)
- Stream compact on condition: ≤ 3

- Store pivot

- Stream compact on condition: > 3 (store with offset)

GPU acceleration details

- Continued partitioning/synchronization on sub-arrays results in sorted array

Final Thoughts

- "Less obviously parallelizable" problems
- Hardware matters! (synchronization, bank conflicts, ...)
- Resources:
- GPU Gems, Vol. 3, Ch. 39
- Highly Recommend Reading Guide to CUDA Optimization, with a Reduction Example

