CS 179: GPU Programming Lecture 7

Week 3

- Goals:
 - More involved GPU-accelerable algorithms
 - Relevant hardware quirks
 - CUDA libraries

Outline

- GPU-accelerated:
 - Reduction
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

Elementwise Addition

Problem: C[i] = A[i] + B[i]

• CPU code:

```
float *C = malloc(N *
sizeof(float));
for (int i = 0; i < N; i++)
        C[i] = A[i] + B[i];</pre>
```

• GPU code:

// assign device and host memory pointers, and allocate memory
in host

```
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
    C[thread_index] = A[thread_index] + B[thread_index];
    thread_index += blockDim.x * gridDim.x;
}
```

Reduction Example Problem: Sum of Array

• CPU code:

float sum = 0.0; for (int i = 0; i < N; i++) sum += A[i];

• GPU "Code":

// assign, allocate, initialize device and host memory pointers
// create threads and assign indices for each thread
// assign each thread a specific region to get a sum over
// wait for all threads to finish running (_____syncthreads;)
// combine all thread sums for final solution

Naïve Reduction Problem: Sum of Array

- Serial Recombination causes speed reduction with GPUs, especially with higher number of threads
- GPU must use atomic functions for mutex

```
atomicCAS
```

atomicAdd

Naive Reduction

Suppose we wished to accumulate our results...

Naive Reduction

Suppose we wished to accumulate our results...

global void cudaSum atomic kernel(const float* const inputs, unsigned int numberOfInputs, const float* const c, unsigned int polynomialOrder, float* output) { //set inputIndex to initial thread index... float partial sum = 0.0; while (inputIndex < numberOfInputs) {</pre> //calculate polynomial value at inputs[inputIndex] and //add it to the partial sum... //increment input index to the next value ... output += partial sum Thread-unsafe!

Naive (but correct) Reduction

```
qlobal void
cudaSum atomic kernel (const float* const inputs,
                                      unsigned int numberOfInputs,
                                      const float* const c,
                                      unsigned int polynomialOrder,
                                      float* output) {
    //set inputIndex to initial thread index...
    float partial sum = 0.0;
    while (inputIndex < numberOfInputs) {</pre>
        //calculate polynomial value at inputs[inputIndex] and
        //add it to the partial sum...
        //increment input index to the next value ...
    atomicAdd (output, partial sum);
```

GPU threads in naive reduction

http://telegraph.co.uk/

Shared memory accumulation

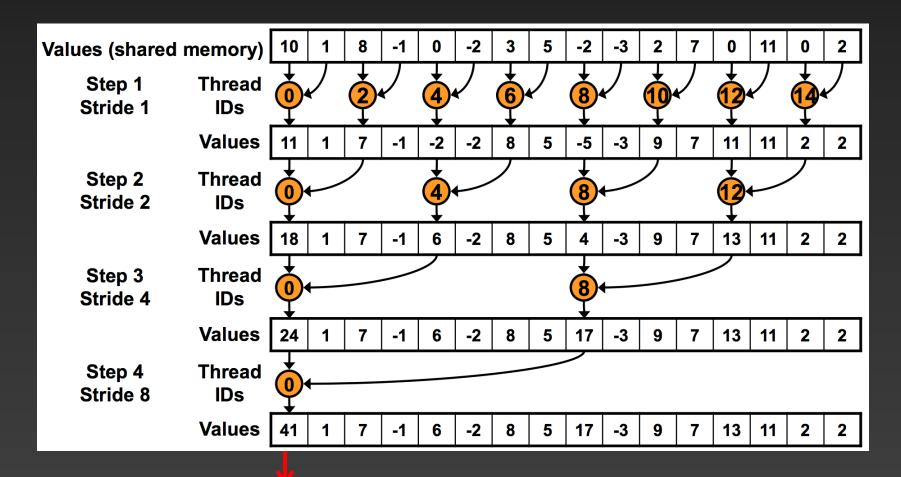
```
global void
cudaSum linear kernel (const float* const inputs,
                                 unsigned int numberOfInputs,
                                 const float* const c,
                                 unsigned int polynomialOrder,
                                 float * output) {
   extern shared float partial outputs[];
   //calculate partial sum as before...
   //but this time, store the result in the partial outputs[threadIndex]...
   //Make all threads in the block finish before continuing!
   syncthreads();
```

Shared memory accumulation (2)

```
atomicAdd(output, partial_sum);
```

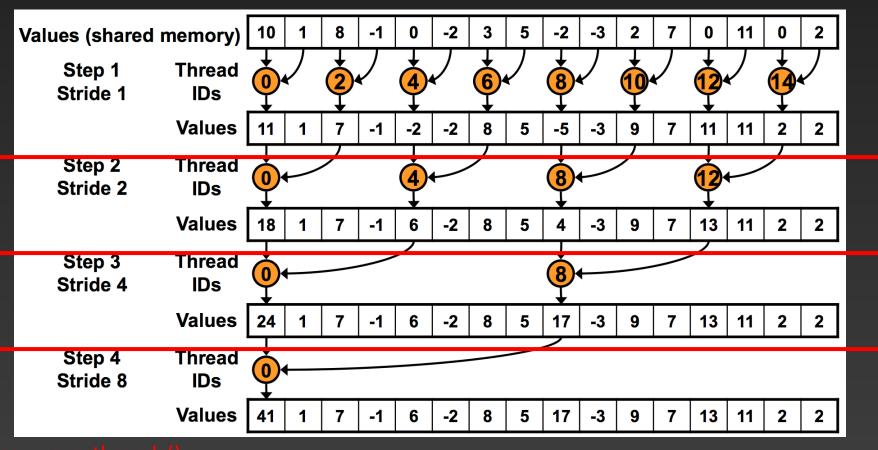
}

"Binary tree" reduction



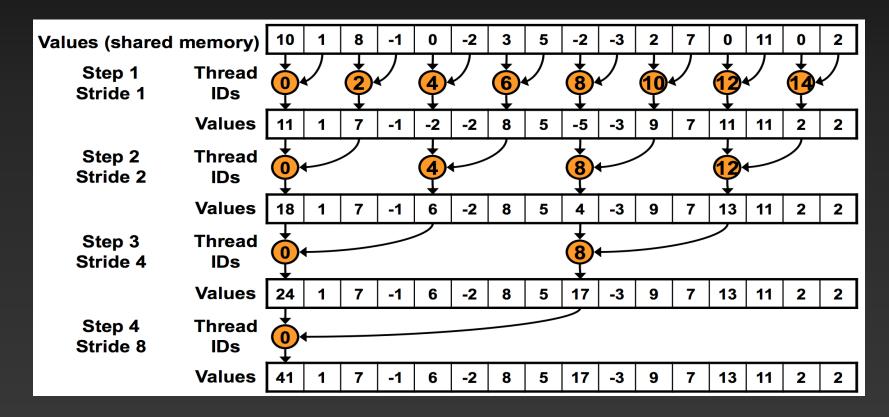
One thread atomicAdd's this to global result

"Binary tree" reduction



Use ___syncthreads(, before proceeding!

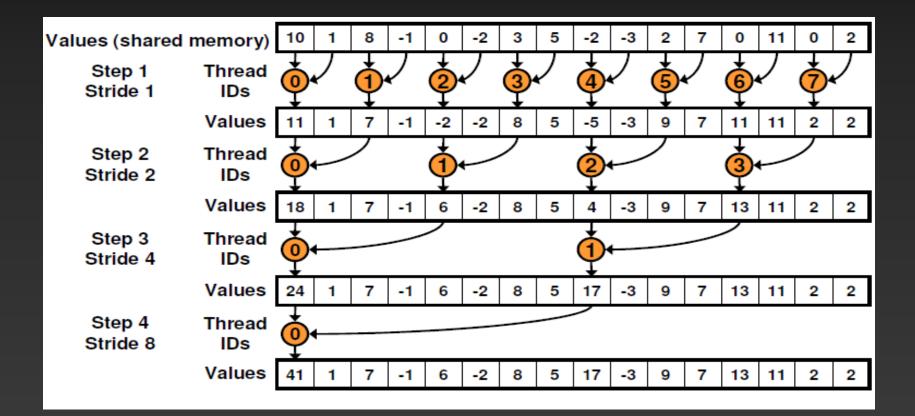
"Binary tree" reduction



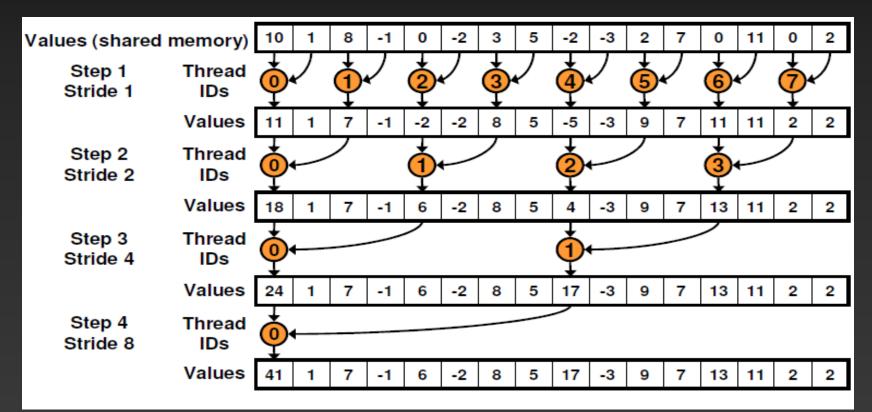
• Warp Divergence!

Odd threads won't even execute

Non-divergent reduction

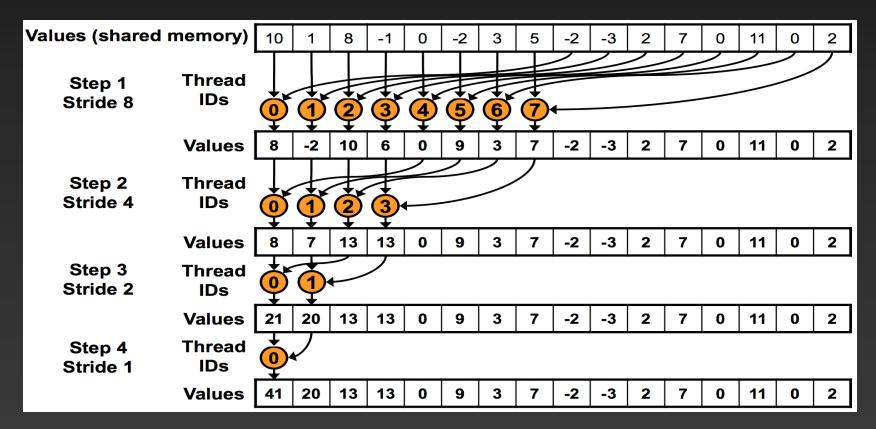


Non-divergent reduction



- Shared Memory Bank Conflicts!
 - 1st iteration: 2-way,
 - 2nd iteration: 4-way (!), ...

Sequential addressing



Sequential Addressing Automatically Resolves Bank Conflict Problems

Reduction

- More improvements possible
 - "Optimizing Parallel Reduction in CUDA" (Harris)
 - Code examples!

- Moral:
 - Different type of GPU-accelerized problems
 Some are "parallelizable" in a different sense
 More hardware considerations in play

Outline

- GPU-accelerated:
 - Reduction
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

• Given input sequence x[n], produce sequence $y[n] = \sum_{k=0}^{n} x[k]$

- e.g. x[n] = (1, 2, 3, 4, 5, 6)
-> y[n] = (1, 3, 6, 10, 15, 21)

• Recurrence relation: y[n] = y[n-1] + x[n]

• Given input sequence x[n], produce sequence $y[n] = \sum_{k=0}^{n} x[k]$

- e.g. x[n] = (1, 2, 3, 4, 5, 6)
-> y[n] = (1, 3, 6, 10, 15, 21)

- Recurrence relation: y[n] = y[n-1] + x[n]
 - Is it parallelizable? Is it GPU-accelerable?

- Recall:
 - $y[n] = x[n] + x[n-1] + \dots + x[n (K 1)]$
 - » Easily parallelizable!

$$- y[n] = c \cdot x[n] + (1-c) \cdot y[n-1]$$

» Not so much

- Recurrence relation: y[n] = y[n-1] + x[n]
 - Is it parallelizable? Is it GPU-accelerable?

• Goal:

Parallelize using a "reduction-like" strategy

Prefix Sum sample code (up-sweep)

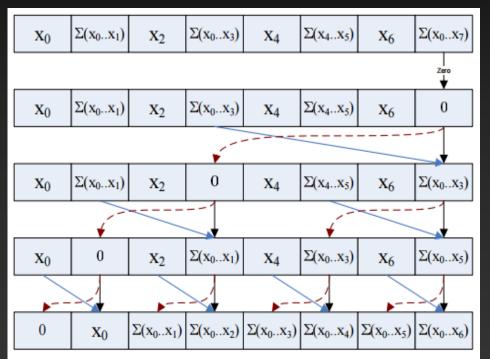
X ₀	$\Sigma(\mathbf{x}_{0}\mathbf{x}_{1})$	X2	$\Sigma(x_0x_3)$	X 4	Σ(x4x5)	x ₆	$\Sigma(x_{0}x_{7})$
d = 2							
X ₀	$\Sigma(x_0x_1)$	X2	$\Sigma(\mathbf{x}_0\mathbf{x}_3)$	X 4	$\Sigma(x_4x_5)$	X6	Σ(x ₄ x ₇)
d = 1		\sim					
X ₀	$\Sigma(x_0x_1)$	x ₂	$\Sigma(x_2x_3)$	X 4	$\Sigma(x_4x_5)$	X6	$\Sigma(x_6x_7)$
d = 0		/				/	
X ₀	x ₁	x ₂	X ₃	X 4	X ₅	x ₆	X ₇

[1, 3, 3, 10, 5, 11, 7, 36]
[1, 3, 3, 10, 5, 11, 7, 26]
[1, 3, 3, 7, 5, 11, 7, 15]
riginal array
[1, 2, 3, 4, 5, 6, 7, 8]

for d = 0 to $(\log_2 n) - 1$ do for all k = 0 to n-1 by 2^{d+1} in parallel do $x[k + 2^{d+1} - 1] = x[k + 2^d - 1] + x[k + 2^d]$

We want: [0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum sample code (down-sweep)

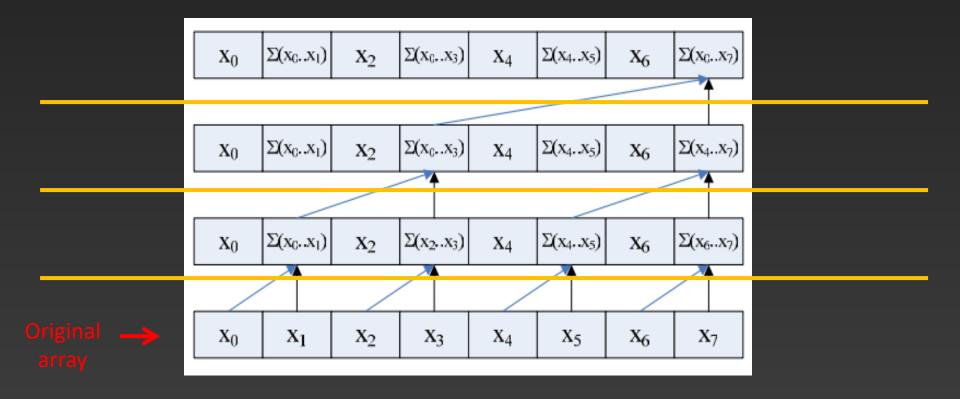


$$\begin{split} x[n-1] &= 0\\ \text{for } d &= \log_2(n) - 1 \text{ down to 0 do}\\ \text{for all } k &= 0 \text{ to } n-1 \text{ by } 2^d+1 \text{ in parallel do}\\ t &= x[k+2^d-1]\\ x[k+2^d-1] &= x[k+2^d]\\ x[k+2^d] &= t+x[k+2^d] \end{split}$$

(University of Michigan EECS, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf [1, 3, 3, 10, 5, 11, 7, 36] [1, 3, 3, 10, 5, 11, 7, **0**] [1, 3, 3, 0, 5, 11, 7, 10] [1, 0, 3, 3, 5, 10, 7, 21][0, 1, 3, 6, 10, 15, 21, 28]

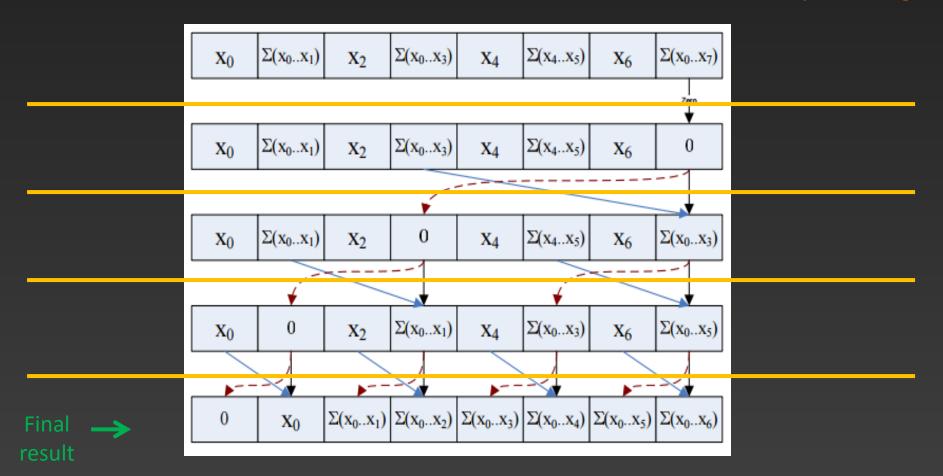
Prefix Sum (Up-Sweep)

Use ____syncthreads() before proceeding!



Prefix Sum (Down-Sweep)

Use <u>syncthreads</u>) before proceeding!



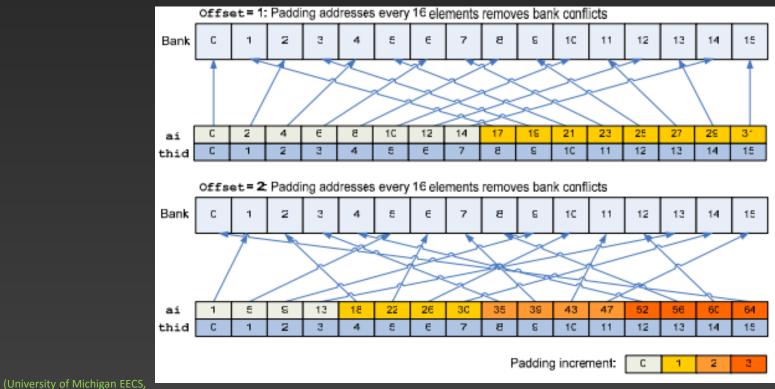
(University of Michigan EECS, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix sum

- Bank conflicts galore!
 - 2-way, 4-way, ...

Prefix sum

- Bank conflicts!
 - 2-way, 4-way, ...
 - Pad addresses!



http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

- <u>http://http.developer.nvidia.com/GPUGems3/</u> <u>gpugems3_ch39.html</u> -- See Link for a More In-Depth Explanation of Up-Sweep and Down-Sweep
- Why does the prefix sum matter?

Outline

- GPU-accelerated:
 - Reduction
 - Prefix sum
 - -Stream compaction
 - Sorting (quicksort)

Stream Compaction

- Problem:
 - Given array A, produce subarray of A defined by boolean condition

```
– e.g. given array:
```

2 5	1 4	6	3
-----	-----	---	---

• Produce array of numbers > 3

Stream Compaction

• Given array A:

- GPU kernel 1: Evaluate boolean condition,

• Array M: 1 if true, 0 if false

	0	1	0	1	1	0
--	---	---	---	---	---	---

– GPU kernel 2: Cumulative sum of M (denote S)

|--|

- GPU kernel 3: At each index,

if M[idx] is 1, store A[idx] in output at position (S[idx] - 1)

5 4 6

Outline

- GPU-accelerated:
 - Reduction
 - Prefix sum
 - Stream compaction
 - -Sorting (quicksort)

GPU-accelerated quicksort

• Quicksort:

Divide-and-conquer algorithm

Partition array along chosen pivot point

Sequential version

5 5

5 5

• Pseudocode:

quicksort(A, lo, hi):
 if lo < hi:
 p := partition(A, lo, hi)
 quicksort(A, lo, p - 1)
 quicksort(A, p + 1, hi)</pre>

GPU-accelerated partition

• Given array A:

Choose pivot (e.g. 3)

- Stream compact on condition: ≤ 3

Store pivot

- Stream compact on condition: > 3 (store with offset)

2 1 3	5	4	6
-------	---	---	---

GPU acceleration details

 Continued partitioning/synchronization on sub-arrays results in sorted array

Final Thoughts

"Less obviously parallelizable" problems

 Hardware matters! (synchronization, bank conflicts, ...)

- Resources:
 - GPU Gems, Vol. 3, Ch. 39
 - Highly Recommend Reading <u>This</u> Guide to CUDA Optimization, with a Reduction Example