
CS 179: GPU
Programming
LECTURE 5: GPU COMPUTE ARCHITECTURE

1

Last time...

 GPU Memory System
◦ Different kinds of memory pools, caches, etc
◦ Different optimization techniques

2

Warp Schedulers

 Warp schedulers find a warp that is ready to execute its next instruction and available execution
cores and then start execution
◦ GK110: 4 warp schedulers, 2 dispatchers in each SM

◦ Starts instructions in up to 4 warps each clock,

◦ and starts up to 2 instructions in each warp.

3

GK110 (Kepler) numbers

● max threads / SM = 2048 (64 warps)
● max threads / block = 1024 (32 warps)
● 32 bit registers / SM = 64k
● max shared memory / SM = 48KB
The number of blocks that run concurrently on a SM depends on the resource requirements of the
block!

4

Occupancy

occupancy = warps per SM / max warps per SM

max warps / SM depends only on GPU

warps / SM depends on warps / block, registers / block, shared memory / block.

5

GK110 Occupancy

100% occupancy
● 2 blocks of 1024 threads
● 32 registers/thread
● 24KB of shared memory / block

50% occupancy
● 1 block of 1024 threads
● 64 registers/thread
● 48KB of shared memory / block

6

This lecture

◦ Synchronization

◦ Atomic Operations

◦ Instruction Dependencies

◦ Instruction Level Parallelism (ILP)

7

Synchronization

 Synchronization is a process by which multiple threads must indirectly communicate
with each other in order to make sure they do not clash with each other
◦ Example of a synchronization issue:
◦ int x = 1;

◦ Thread 1 wants to add 1 to x;
◦ Thread 2 wants to add 1 to x;

◦ Thread 1 reads in the value of x (which is 1) into a register
◦ Thread 2 reads in the value of x (which is still 1) into a register

◦ Both threads increment the values they read in but they both think the final value
is 2

◦ They write x back out and the final result is 2

8

Synchronization

 On a CPU, you can solve synchronization issues using Locks, Semaphores, Condition Variables, etc.
 On a GPU, these solutions introduce too much memory and process overhead
◦ We have simpler solutions better suited for parallel programs

9

CUDA Synchronization

 Use the __syncthreads() function to sync threads within a block
◦ Only works at the block level
◦ SMs are separate from each other so can't do better than this

◦ Similar to barrier() function in C/C++

10

Atomic Operations

 Atomic Operations are operations that ONLY happen in sequence
◦ For example, if you want to add up N numbers by adding the numbers to a variable that starts

in 0, you must add one number at a time

◦ Don't do this though. We'll talk about better ways to do this in the next lecture. Only use
when you have no other options

 CUDA provides built in atomic operations
◦ Use the functions: atomic<op>(float *address, float val);
◦ Replace <op> with one of: Add, Sub, Exch, Min, Max, Inc, Dec, And, Or, Xor

◦ e.g. atomicAdd(float *address, float val) for atomic addition

◦ These functions are all implemented using a function called atomicCAS(int *address, int compare, int val)

◦ CAS stands for compare and swap. The function compares *address to compare and swaps the value to
val if the values are different

11

Instruction Dependencies

acc += x[0];

acc += x[1];

acc += x[2];

acc += x[3];
...

12

 An Instruction Dependency is a requirement relationship
between instructions that force a sequential execution
◦ In the example on the right, each summation call must

happen in sequence because the value of acc depends
on the previous summation as well

 Can be caused by direct dependencies or requirements set
by the execution order of code
◦ I.e. You can't start an instruction until all previous

operations have been completed in a single thread

Instruction Level Parallelism (ILP)
 Instruction Level Parallelism is when you avoid performances losses caused by
instruction dependencies

◦ In CUDA, also removes performances losses caused by how certain operations
are handled by the hardware

13

ILP Example

z0 = x[0] + y[0];

z1 = x[1] + y[1];

x0 = x[0];

y0 = y[0];

z0 = x0 + y0;

x1 = x[1];

y1 = y[1];

z1 = x1 + y1;

14

COMPILATION

• The second half of the code can't start execution until the first half completes

ILP Example

z0 = x[0] + y[0];

z1 = x[1] + y[1];

x0 = x[0];

y0 = y[0];

x1 = x[1];

y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

15

COMPILATION

• Sequential nature of the code due to instruction dependency has been minimized.

• Additionally, this code minimizes the number of memory transactions required

Questions?

◦ Synchronization

◦ Atomic Operations

◦ Instruction Dependencies

◦ Instruction Level Parallelism (ILP)

16

Next time...

 Set 2 Rec on Friday (04/06)
 GPU based algorithms (next week)

17

