
CS 179: GPU
Computing
LECTURE 2: MORE BASICS

Recap
 Can use GPU to solve highly parallelizable problems

 Straightforward extension to C++

◦ Separate CUDA code into .cu and .cuh files and compile with nvcc to
create object files (.o files)

 Looked at the a[] + b[] -> c[] example

Recap
 If you forgot everything, just make sure you understand that CUDA is
simply an extension of other bits of code you write!!!!

◦ Evident in .cu/.cuh vs .cpp/.hpp distinction

◦ .cu/.cuh is compiled by nvcc to produce a .o file

◦ .cpp/.hpp is compiled by g++ and the .o file from the CUDA code is
simply linked in using a "#include xxx.cuh" call

◦ No different from how you link in .o files from normal C++ code

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

Thread Organization
 We will now look at how threads are organized and used in GPUs

◦ Keywords you MUST know to code in CUDA:

◦ Thread

◦ Block

◦ Grid

◦ Keywords you MUST know to code WELL in CUDA:

◦ (Streaming) Multiprocessor

◦ Warp

◦ Warp Divergence

Inside a GPU

The black Xs are just
crossing out things you

don’t have to think about
just yet. You'll learn about

them later

Inside a GPU
 Think of Device Memory (we will also
refer to it as Global Memory) as a
RAM for your GPU
◦ Faster than getting memory from the

actual RAM but still can be faster

◦ Will come back to this in future lectures

 GPUs have many Streaming
Multiprocessors (SMs)
◦ Each SM has multiple processors but

only one instruction unit

◦ Groups of processors must run the
exact same set of instructions at any
given time with in a single SM

Inside a GPU
 When a kernel (the thing you define in
.cu files) is called, the task is divided up
into threads

◦ Each thread handles a small portion of
the given task

 The threads are divided into a Grid of
Blocks

◦ Both Grids and Blocks are 3 dimensional

◦ e.g.

dim3 dimBlock(8, 8, 8);

dim3 dimGrid(100, 100, 1);

Kernel<<<dimGrid, dimBlock>>>(…);

◦ However, we'll often only work with 1
dimensional grids and blocks

◦ e.g. Kernel<<<block_count, block_size>>>(…);

Inside a GPU
 Maximum number of threads per block
count is usually 512 or 1024 depending
on the machine

 Maximum number of blocks per grid is
usually 65535

◦ If you go over either of these numbers
your GPU will just give up or output
garbage data

◦ Much of GPU programming is dealing
with this kind of hardware limitations!
Get used to it

◦ This limitation also means that your
Kernel must compensate for the fact that
you may not have enough threads to
individually allocate to your data points

◦ Will show how to do this later (this lecture)

Inside a GPU
 Each block is assigned to an SM

 Inside the SM, the block is divided into
Warps of threads

◦ Warps consist of 32 threads

◦ All 32 threads MUST run the exact
same set of instructions at the same
time

◦ Due to the fact that there is only one
instruction unit

◦ Warps are run concurrently in an SM

◦ If your Kernel tries to have threads do
different things in a single warp (using
if statements for example), the two tasks
will be run sequentially

◦ Called Warp Divergence (NOT GOOD)

Inside a GPU
(fun hardware info)

 In Fermi Architecture (i.e. GPUs with
Compute Capability 2.x), each SM has
32 cores

◦ e.g. GTX 400, 500 series

◦ 32 cores is not what makes each
warp have 32 threads. Previous
architecture also had 32 threads per
warp but had less than 32 cores per
SM

 Halo.cms.caltech.edu has 3 GTX 570s

◦ This course will cover CC 2.x

Streaming Multiprocessor

A[] + B[] -> C[] (again)

A[] + B[] -> C[] (again)

A[] + B[] -> C[] (again)

Questions so far?

Stuff that will be useful later

Stuff that will be useful later

Stuff that will be useful later

Next Time...
 Global Memory access is not that fast

◦ Tends to be the bottleneck in many GPU programs

◦ Especially true if done stupidly
◦ We'll look at what "stupidly" means

 Optimize memory access by utilizing hardware specific memory access
patterns

 Optimize memory access by utilizing different caches that come with
the GPU

