
CS 179: GPU 
Computing 
LECTURE 2: MORE BASICS  



Recap 
 Can use GPU to solve highly parallelizable problems 

 Straightforward extension to C++ 

◦ Separate CUDA code into .cu and .cuh files and compile with nvcc to 
create object files (.o files) 

 Looked at the a[] + b[] -> c[] example 



Recap 
 If you forgot everything, just make sure you understand that CUDA is 
simply an extension of other bits of code you write!!!! 

◦ Evident in .cu/.cuh vs .cpp/.hpp distinction 

◦ .cu/.cuh is compiled by nvcc to produce a .o file 

◦ .cpp/.hpp is compiled by g++ and the .o file from the CUDA code is 
simply linked in using a "#include xxx.cuh" call 

◦ No different from how you link in .o files from normal C++ code 
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Thread Organization 
 We will now look at how threads are organized and used in GPUs 

◦ Keywords you MUST know to code in CUDA: 

◦ Thread 

◦ Block 

◦ Grid 

◦ Keywords you MUST know to code WELL in CUDA: 

◦ (Streaming) Multiprocessor 

◦ Warp 

◦ Warp Divergence 



Inside a GPU 

The black Xs are just 
crossing out things you 

don’t have to think about 
just yet. You'll learn about 

them later 



Inside a GPU  
 Think of Device Memory (we will also 
refer to it as Global Memory) as a 
RAM for your GPU 
◦ Faster than getting memory from the 

actual RAM but still can be faster 

◦ Will come back to this in future lectures 

 GPUs have many Streaming 
Multiprocessors (SMs) 
◦ Each SM has multiple processors but 

only one instruction unit 

◦ Groups of processors must run the 
exact same set of instructions at any 
given time with in a single SM 



Inside a GPU  
 When a kernel (the thing you define in 
.cu files) is called, the task is divided up 
into threads 

◦ Each thread handles a small portion of 
the given task 

 The threads are divided into a Grid of 
Blocks 

◦ Both Grids and Blocks are 3 dimensional 

◦ e.g. 

dim3 dimBlock(8, 8, 8); 

dim3 dimGrid(100, 100, 1); 

Kernel<<<dimGrid, dimBlock>>>(…); 

◦ However, we'll often only work with 1 
dimensional grids and blocks 

◦ e.g. Kernel<<<block_count, block_size>>>(…); 



Inside a GPU  
 Maximum number of threads per block 
count is usually 512 or 1024 depending 
on the machine 

 Maximum number of blocks per grid is 
usually 65535 

◦ If you go over either of these numbers 
your GPU will just give up or output 
garbage data 

◦ Much of GPU programming is dealing 
with this kind of hardware limitations! 
Get used to it 

◦ This limitation also means that your 
Kernel must compensate for the fact that 
you may not have enough threads to 
individually allocate to your data points 

◦ Will show how to do this later (this lecture) 



Inside a GPU  
 Each block is assigned to an SM 

 Inside the SM, the block is divided into 
Warps of threads 

◦ Warps consist of 32 threads 

◦ All 32 threads MUST run the exact 
same set of instructions at the same 
time 

◦ Due to the fact that there is only one 
instruction unit 

◦ Warps are run concurrently in an SM 

◦ If your Kernel tries to have threads do 
different things in a single warp (using 
if statements for example), the two tasks 
will be run sequentially 

◦ Called Warp Divergence (NOT GOOD) 



Inside a GPU 
(fun hardware info) 

 In Fermi Architecture (i.e. GPUs with 
Compute Capability 2.x), each SM has 
32 cores 

◦ e.g. GTX 400, 500 series 

◦ 32 cores is not what makes each 
warp have 32 threads. Previous 
architecture also had 32 threads per 
warp but had less than 32 cores per 
SM 

 Halo.cms.caltech.edu has 3 GTX 570s 

◦ This course will cover CC 2.x 



Streaming Multiprocessor 
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Questions so far? 
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Next Time... 
 Global Memory access is not that fast 

◦ Tends to be the bottleneck in many GPU programs 

◦ Especially true if done stupidly 
◦ We'll look at what "stupidly" means 

 Optimize memory access by utilizing hardware specific memory access 
patterns 

 Optimize memory access by utilizing different caches that come with 
the GPU 


