
CS 179: GPU Programming

Lecture 1: Introduction

Images: http://en.wikipedia.org

http://www.pcper.com

http://northdallasradiationoncology.com/

GPU Gems (Nvidia)

Administration

Covered topics:

(GP)GPU computing/parallelization

C++ CUDA (parallel computing platform)

TAs:

Andrew Zhao (azhao@dmail.caltech.edu)

Parker Won (jwon@caltech.edu)

Nailen Matchstick (nailen@caltech.edu)

Jordan Bonilla (jbonilla@caltech.edu)

Website:

http://courses.cms.caltech.edu/cs179/

Overseeing Instructor:

Al Barr (barr@cs.caltech.edu)

Class time:

ANB 107, MWF 3:00 PM

Course Requirements

Homework:
6 weekly assignments

Each worth 10% of grade

Final project:
4-week project

40% of grade total

Homework

Due on Wednesdays before class (3PM)

Collaboration policy:
Discuss ideas and strategies freely, but all code must be your own

Office Hours: Located in ANB 104
Times: TBA (will be announced before first set is out)

Extensions
Ask a TA for one if you have a valid reason

Projects

Topic of your choice
We will also provide many options

Teams of up to 2 people
2-person teams will be held to higher expectations

Requirements
Project Proposal

Progress report(s) and Final Presentation

More info later…

Machines

Primary machine (multi-GPU, remote access):
haru.caltech.edu

Secondary machines

mx.cms.caltech.edu

minuteman.cms.caltech.edu

Use your CMS login

NOTE: Not all assignments work on these machines

Change your password
Use passwd command

Machines

Alternative: Use your own machine:
Must have an NVIDIA CUDA-capable GPU

Virtual machines won’t work
Exception: Machines with I/O MMU virtualization and certain GPUs

Special requirements for:
Hybrid/optimus systems

Mac/OS X

Setup guides posted on the course website

Machines

OS/Server Access Survey
PLEASE take this survey by 12PM Wednesday (03/30/2016)

https://www.surveymonkey.com/r/DTKX2HX (link will be sent out via email after class)

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary calculations
General-purpose capabilities

Established technology

Usually equipped with 8 or less powerful cores

Optimal for concurrent processes but not large scale parallel computations

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary calculations
General-purpose capabilities

Established technology

Usually equipped with 8 or less powerful cores

Optimal for concurrent processes but not large scale parallel computations

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg

The GPU

The "Graphics Processing Unit"

Relatively new technology designed for parallelizable problems
Initially created specifically for graphics

Became more capable of general computations

GPUs – The Motivation

Raytracing:

for all pixels (i,j):

 Calculate ray point and direction in 3d space

 if ray intersects object:

 calculate lighting at closest object

 store color of (i,j)

Superquadric Cylinders, exponent 0.1, yellow glass balls, Barr, 1981

EXAMPLE

Add two arrays
A[] + B[] -> C[]

On the CPU:
float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

Operates sequentially… can we do better?

A simple problem…

On the CPU (multi-threaded, pseudocode):
(allocate memory for C)

Create # of threads equal to number of cores on processor (around
2, 4, perhaps 8)

(Indicate portions of A, B, C to each thread...)

...

In each thread,

For (i from beginning region of thread)

C[i] <- A[i] + B[i]

//lots of waiting involved for memory reads, writes, ...

Wait for threads to synchronize...

Slightly faster – 2-8x (slightly more with other tricks)

A simple problem…

How many threads? How does performance scale?

Context switching:
High penalty on the CPU

Low penalty on the GPU

A simple problem…

On the GPU:
(allocate memory for A, B, C on GPU)

Create the “kernel” – each thread will perform one (or a few)
additions

 Specify the following kernel operation:

 For (all i„s assigned to this thread)

 C[i] <- A[i] + B[i]

Start ~20000 (!) threads

Wait for threads to synchronize...

GPU: Strengths Revealed

Parallelism / lots of cores

Low context switch penalty!
We can “cover up” performance loss by creating more threads!

GPU Computing: Step by Step

Setup inputs on the host (CPU-accessible memory)

Allocate memory for inputs on the GPU

Allocate memory for outputs on the host

Allocate memory for outputs on the GPU

Copy inputs from host to GPU

Start GPU kernel

Copy output from GPU to host

(Copying can be asynchronous)

The Kernel

Our “parallel” function

Simple implementation

Indexing

Can get a block ID and thread ID within the block:
Unique thread ID!

Calling the Kernel

Calling the Kernel (2)

Questions?

GPUs – Brief History

Fixed-function pipelines
Pre-set functions, limited

 options

http://gamedevelopment.tutsplus.com/articles/the-end-of-

fixed-function-rendering-pipelines-and-how-to-move-on--

cms-21469

Source: Super Mario 64, by Nintendo

GPUs – Brief History

Shaders
Could implement one’s own functions!

GLSL (C-like language)

Could “sneak in” general-purpose programming!

http://minecraftsix.com/glsl-shaders-mod/

GPUs – Brief History

CUDA (Compute Unified Device Architecture)
General-purpose parallel computing platform for NVIDIA GPUs

OpenCL (Open Computing Language)
General heterogenous computing framework

…

Accessible as extensions to C! (and other languages…)

GPUs Today

“General-purpose computing on GPUs” (GPGPU)

