Lecture |:Introduction

Administration

Covered topics:
#(GP)GPU computing/parallelization
nC++ CUDA (parallel computing platform)
TAs:
mAndrew Zhao (azhao@dmail.caltech.edu)
mParker Won (jwon@caltech.edu)
mNailen Matchstick (nailen@caltech.edu)
mJordan Bonilla (jbonilla@caltech.edu)
Website:
mhttp://courses.cms.caltech.edu/cs 179/
Overseeing Instructor:
mAl Barr (barr@cs.caltech.edu)
Class time:
=ANB 107, MWF 3:00 PM

Course Requirements

Homework:
m6 weekly assignments
mEach worth 10% of grade
Final project:
m4-week project
®40% of grade total

Homework

Due on Wednesdays before class (3PM)

Collaboration policy:
mDiscuss ideas and strategies freely, but all code must be your own
Office Hours: Located in ANB 104

mTimes:TBA (will be announced before first set is out)

Extensions
mAsk a TA for one if you have a valid reason

Projects

Topic of your choice

#We will also provide many options
Teams of up to 2 people

m2-person teams will be held to higher expectations
Requirements

mProject Proposal

mProgress report(s) and Final Presentation

=More info later...

MET TS

Primary machine (multi-GPU, remote access):
mharu.caltech.edu
Secondary machines
mmx.cms.caltech.edu
="minuteman.cms.caltech.edu
mUse your CMS login
sNOTE: Not all assignments work on these machines
Change your password
mUse passwd command

MET TS

Alternative: Use your own machine:
mMust have an NVIDIA CUDA-capable GPU

=Virtual machines won’t work

mException: Machines with I/O MMU virtualization and certain GPUs
mSpecial requirements for:

mHybrid/optimus systems

®#Mac/OS X

Setup guides posted on the course website

MET TS

OS/Server Access Survey
mPLEASE take this survey by 12PM Wednesday (03/30/2016)
mhttps://www.surveymonkey.com/r/DTKX2HX (link will be sent out via email after class)

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary calculations
mGeneral-purpose capabilities
mEstablished technology
mUsually equipped with 8 or less powerful cores
mOptimal for concurrent processes but not large scale parallel computations

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary calculations
mGeneral-purpose capabilities
mEstablished technology
mUsually equipped with 8 or less powerful cores
mOptimal for concurrent processes but not large scale parallel computations

The GPU

The "Graphics Processing Unit"

Relatively new technology designed for parallelizable problems
m|nitially created specifically for graphics
mBecame more capable of general computations

GPUs — The Motivation

Raytracing:
for all pixels (1,3):
Calculate ray point and direction i1n 3d space
1f ray intersects object:
calculate 1lighting at closegt:Ql
store color of (i,7)

EXAMPLE

Add two arrays
"A[] + B[] -> C[]

On the CPU:

float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)

cl[i] = A[i] + B[i];

mOperates sequentially... can we do better?

A simple problem...

mOn the CPU (multi-threaded, pseudocode):

(allocate memory for C)

Create # of threads equal to number of cores on processor (around
2, 4, perhaps 8)

(Indicate portions of A, B, C to each thread...)

In each thread,

For (i from beginning region of thread)

Cc[i] <- A[1] + B[1]

//lots of waiting involved for memory reads, writes,
wait for threads to synchronize...

mSlightly faster — 2-8x (slightly more with other tricks)

A simple problem...

mHow many threads? How does performance scale!?

mContext switching:
mHigh penalty on the CPU
= ow penalty on the GPU

A simple problem...

mOn the GPU:

(allocate memory for A, B, C on GPU)

Create the “kernel” - each thread will perform one (or a few)
additions

Specify the following kernel operation:

For (all i‘s assigned to this thread)
C[i] <- A[i] + B[il

Start ~20000 (!) threads
wait for threads to synchronize...

GPU: Strengths Revealed

mParallelism / lots of cores

m| ow context switch penalty!
=We can “cover up” performance loss by creating more threads!

GPU Computing: Step by Step

mSetup inputs on the host (CPU-accessible memory)
mAllocate memory for inputs on the GPU

mAllocate memory for outputs on the host
mAllocate memory for outputs on the GPU

mCopy inputs from host to GPU

mStart GPU kernel

mCopy output from GPU to host

#(Copying can be asynchronous)

The Kernel

mQur “parallel” function
mSimple implementation

__global void
cudaAddVectorsKernel (float * a, float * b, float * c) {

c[index] = a[index] + b[index];

Indexing

__global void

cudaAddVectorsKernel(float * a, float * b, float * c) {
unsigned int index = blockIdx.x * blockDim.x + threadIdx.Xx;
c[index] = a[index] + b[index];:

b

Calling the Kernel

void cudaAddVectors(float* a, float* b, float* c, size){

float * dev _a;
float * dev b;

float * dev c;

cudaMalloc((void **) &dev a, size* (float));
cudaMemcpy(dev_a, a, size* (float), cudaMemcpyHostToDevice);

cudaMalloc((void **) &dev b, size* (float));
cudaMemcpy(dev b, b, size* (float), cudaMemcpyHostToDevice);

cudaMalloc((void **) &dev c, size* (float));

Calling the Kernel (2)

unsigned int threadsPerBlock = 512;

unsigned int blocks = ceil(size/float(threadsPerBlock));

cudaAddVectorsKernel<<<blocks, threadsPerBlock>>>

(dev a, dev b, dev c);

cudaMemcpy(c, dev c, size* (float), cudaMemcpyDeviceToHost);

cudafFree(dev a);
cudaFree(dev b);
cudaFree(dev c);

Questions?

GPUs — Brief History

vertex and index lists

transform & lighting
transformed vertices
assembly of primitives
triangles, lines, points
rasterization

fragments

texture operations

frame buffer

last-stage processed pixels

pixels on the screen

GPUs — Brief History

mShaders
mCould implement one’s own functions!
mGLSL (C-like language)
mCould “sneak in” general-purpose progra

GPUs — Brief History

mCUDA (Compute Unified Device Architecture)
mGeneral-purpose parallel computing platform for NVIDIA GPUs
mOpenCL (Open Computing Language)
mGeneral heterogenous computing framework
|

mAccessible as extensions to C! (and other languages...)

GPUs Today

m“General-purpose computing on GPUs” (GPGPU)

