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Proposal Guidelines
● 1-3 sentence summary of project
● team members (pair or solo)
● Hoping to do 3 week or 5 week?
● 1-3 paragraph explanation of project with background
● Why is this challenging? Has it been done before? What 

tricky things are you going to have to figure out? 1-2 
paragraphs

● What are the deliverables? Goals? 1 paragraph
● Week by week timeline: What are you going to do each 

week? 2



Available CUDA libraries
● cuBLAS: dense linear algebra
● cuSPARSE: sparse linear algebra
● cuRAND: random numbers, good for MCMC simulations
● cuFFT: Fast Fourier Transform
● cuSOLVER: dense and sparse factorization and system 

solvers
● cuDNN: common operations for deep neural nets

Might be useful for project planning to to check out what 
they provide!
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16 bit matrix multiplication
Some applications (such as deep neural nets) don’t need 
32 bits of precision.

16 bit advantages: speed up matrix multiply due to less IO, 
fit twice as much data in GPU memory

If you create a fast implementation, there’s a good chance 
the deep learning community will use it a lot!
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Cryptocurrency
Find some cryptocurrency with an proof of work algorithm 
that hasn’t been optimized to death, and then optimize it to 
death

An interesting read on the topic
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http://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
http://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html


Randomized Matrix Factorizations
Can quickly approximate SVD, QR decomposition, etc using 
randomized algorithms!
Good project for someone who has taken ACM 106a
● Method for least squares solutions, ultra-high dim’l 

spaces that represent highly constrained systems
● Can compare performance to cuSOLVER, for instance, 

for different size and different types of problems 
● Good survey paper on the subject (PDF)
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http://users.cms.caltech.edu/~jtropp/papers/HMT10-Finding-Structure-preprint.pdf
http://users.cms.caltech.edu/~jtropp/papers/HMT10-Finding-Structure-preprint.pdf


Branch and Bound Systems

Make global B&B solution-finding environment. 
An N-dimensional box-like “volume” is tested for a criterion. 
● If the box passes the test, it is put into a list of “solution boxes.”
● If the box does not pass, it is subdivided into children boxes which are then 

tested. Method finds all such boxes. 
● The criterion/test will be run once per box, suitable to run on GPU
● Can include octree or K-D tree algorithms for representing surfaces and 

solids, for instance, http://www.nvidia.com/docs/IO/88889/laine2010i3d_paper.pdf or 
● N-body gravitational systems that subdivide space with one body per box 

http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf
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http://www.nvidia.com/docs/IO/88889/laine2010i3d_paper.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf


Interval Analysis “Corner Form”
A method for global root finding -- an interval-based B&B 
test that guarantees that a “box” does not contain a root of

f(x,y,z,w) = 0
where f() is a polynomial in x, y, z, w (or more variables). 
● Intervals of f, given input intervals, are computed by “inclusion function”
● The Corner Taylor Form (inclusion function) is more accurate than the 

Midpoint Taylor Form for large input regions, eliminating many boxes early 
in the process. 

See http://thesis.library.caltech.edu/view/author/Gavriliu-M.html

8

http://thesis.library.caltech.edu/view/author/Gavriliu-M.html


Finding global roots of cos2x sin3y + sin3x cos2y - cos2x cos3y + sin3xsin2y = 0
1. (First turn function into polynomial, with error term). Sol’ns in yellow. 
2. On left, “Natural Extension” inclusion function: too many potential solutions.
3. In the middle, “Centered Form” is much improved: 
4. On right, “Corner Form” is even better. Note upper right corner. Large region 

excluded quickly, without need for further subdivision. 
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Hash Table (and/or malloc)
Implement a concurrent hash table that lives in global or 
shared memory.

Implement malloc for global or shared memory.

These will be tricky parallel programming problems!
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Build an assembler
Reverse engineer Fermi or Kepler binaries and build an 
assembler.

Already done for Maxwell: https://github.
com/NervanaSystems/maxas
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https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas


“Speed dating”
Talk to another person about your ideas for 3 minutes.

Will cycle several times.

Goals: hear lots of ideas, connect people with similar ideas,
offer suggestions to each other ideas

12


