
CS 179 Project 
Ideas

1



Proposal Guidelines
● 1-3 sentence summary of project
● team members (pair or solo)
● Hoping to do 3 week or 5 week?
● 1-3 paragraph explanation of project with background
● Why is this challenging? Has it been done before? What 

tricky things are you going to have to figure out? 1-2 
paragraphs

● What are the deliverables? Goals? 1 paragraph
● Week by week timeline: What are you going to do each 

week? 2



Available CUDA libraries
● cuBLAS: dense linear algebra
● cuSPARSE: sparse linear algebra
● cuRAND: random numbers, good for MCMC simulations
● cuFFT: Fast Fourier Transform
● cuSOLVER: dense and sparse factorization and system 

solvers
● cuDNN: common operations for deep neural nets

Might be useful for project planning to to check out what 
they provide!

3



16 bit matrix multiplication
Some applications (such as deep neural nets) don’t need 
32 bits of precision.

16 bit advantages: speed up matrix multiply due to less IO, 
fit twice as much data in GPU memory

If you create a fast implementation, there’s a good chance 
the deep learning community will use it a lot!

4



Cryptocurrency
Find some cryptocurrency with an proof of work algorithm 
that hasn’t been optimized to death, and then optimize it to 
death

An interesting read on the topic

5

http://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
http://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html


Randomized Matrix Factorizations
Can quickly approximate SVD, QR decomposition, etc using 
randomized algorithms!
Good project for someone who has taken ACM 106a
● Method for least squares solutions, ultra-high dim’l 

spaces that represent highly constrained systems
● Can compare performance to cuSOLVER, for instance, 

for different size and different types of problems 
● Good survey paper on the subject (PDF)

6

http://users.cms.caltech.edu/~jtropp/papers/HMT10-Finding-Structure-preprint.pdf
http://users.cms.caltech.edu/~jtropp/papers/HMT10-Finding-Structure-preprint.pdf


Branch and Bound Systems

Make global B&B solution-finding environment. 
An N-dimensional box-like “volume” is tested for a criterion. 
● If the box passes the test, it is put into a list of “solution boxes.”
● If the box does not pass, it is subdivided into children boxes which are then 

tested. Method finds all such boxes. 
● The criterion/test will be run once per box, suitable to run on GPU
● Can include octree or K-D tree algorithms for representing surfaces and 

solids, for instance, http://www.nvidia.com/docs/IO/88889/laine2010i3d_paper.pdf or 
● N-body gravitational systems that subdivide space with one body per box 

http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf

7

http://www.nvidia.com/docs/IO/88889/laine2010i3d_paper.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/nbody-problem.pdf


Interval Analysis “Corner Form”
A method for global root finding -- an interval-based B&B 
test that guarantees that a “box” does not contain a root of

f(x,y,z,w) = 0
where f() is a polynomial in x, y, z, w (or more variables). 
● Intervals of f, given input intervals, are computed by “inclusion function”
● The Corner Taylor Form (inclusion function) is more accurate than the 

Midpoint Taylor Form for large input regions, eliminating many boxes early 
in the process. 

See http://thesis.library.caltech.edu/view/author/Gavriliu-M.html

8

http://thesis.library.caltech.edu/view/author/Gavriliu-M.html


Finding global roots of cos2x sin3y + sin3x cos2y - cos2x cos3y + sin3xsin2y = 0
1. (First turn function into polynomial, with error term). Sol’ns in yellow. 
2. On left, “Natural Extension” inclusion function: too many potential solutions.
3. In the middle, “Centered Form” is much improved: 
4. On right, “Corner Form” is even better. Note upper right corner. Large region 

excluded quickly, without need for further subdivision. 
9



Hash Table (and/or malloc)
Implement a concurrent hash table that lives in global or 
shared memory.

Implement malloc for global or shared memory.

These will be tricky parallel programming problems!

10



Build an assembler
Reverse engineer Fermi or Kepler binaries and build an 
assembler.

Already done for Maxwell: https://github.
com/NervanaSystems/maxas

11

https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas


“Speed dating”
Talk to another person about your ideas for 3 minutes.

Will cycle several times.

Goals: hear lots of ideas, connect people with similar ideas,
offer suggestions to each other ideas

12


