
CS 179 Lecture 13
Host-Device Data Transfer
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Moving data is slow
So far we’ve only considered performance when the data is 
already on the GPU

This neglects the slowest part of GPU programming: 
getting data on and off of GPU
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Moving data is important
Intelligently moving data allows processing data larger than 
GPU global memory (~6GB)

Absolutely critical for real-time or streaming applications 
(common in computer vision, data analytics, control 
systems)

3



Matrix transpose: another look
Time(%)  Time Calls  Avg       Name

49.35%  29.581ms   1    29.581ms   [CUDA memcpy DtoH]

47.48%  28.462ms   1    28.462ms   [CUDA memcpy HtoD]

3.17%   1.9000ms   1    1.9000ms   naiveTransposeKernel

Only 3% of time spent in kernel! 97% of time spent 
moving data onto and off GPU!
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Lecture Outline

● IO strategy
● CUDA streams
● CUDA events
● How it all works: virtual memory, command 

buffers
● Pinned host memory
● Managed memory
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A common pattern
while (1) {

cudaMemcpy(d_input, h_input, input_size)

kernel<<<grid, block>>>(d_input, d_output)

cudaMemcpy(output, d_output, output_size)

}

Throughput limited by IO!
How can we hide the latency?
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Turning dreams into reality

What do we need to make the dream happen?
● hardware to run 2 transfers and 1 kernel in parallel
● 2 input buffers
● 2 output buffers
● asynchronous memcpy & kernel invocation

easy, up to programmer
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Latency hiding checklist

Hardware:
● maximum of 4, 16, or 32 concurrent kernels 

(depending on hardware) on CC >= 2.0
● 1 device→host copy engine
● 1 host→device copy engine
(2 copy engines only on newer hardware, some hardware 
has single copy engine shared for both directions)
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Asynchrony
An asynchronous function returns as soon is it called.

There is generally an interface to check if the function is 
done and to wait for completion.

Kernel launches are asynchronous.
cudaMemcpy is not.
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cudaMemcpyAsync

Convenient asynchronous memcpy! Similar arguments to 
normal cudaMemcpy.

while (1) {

cudaMemcpyAsync(d_in, h_in, in_size)

kernel<<<grid, block>>>(d_in, d_out)

cudaMemcpyAsync(out, d_out, out_size)

}

Can anyone think of any issues with this code?
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CUDA Streams
In previous example, need cudaMemcpyAsync to finish 
before kernel starts. Luckily, CUDA already does this.

Streams let us enforce ordering of operations and express 
dependencies.

Useful blog post describing streams
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http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/


The null / default stream
When stream is not specified, operation only starts after all 
other GPU operations have finished.
CPU code can run concurrently with default stream.
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Stream example
cudaStream_t s[2];

cudaStreamCreate(&s[0]); cudaStreamCreate(&s[1]);

for (int i = 0; i < 2; i++) {

kernel<<<grid, block, shmem, s[i]>(d_outs[i], d_ins[i]);

cudaMemcpyAsync(h_outs[i], d_outs[i], size, dir, s[i]);

}

for (int i = 0; i < 2; i++) {

cudaStreamSynchronize(s[i]);

cudaStreamDestroy(s[i]);

}

kernels run in parallel!
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CUDA events
Streams synchronize the GPU (but can synchronize 
CPU/GPU with cudaStreamSynchronize)

Events are simpler way to enforce CPU/GPU 
synchronization.

Also useful for timing!
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Events example
#define START_TIMER() {                     \

  gpuErrChk(cudaEventCreate(&start));   \

  gpuErrChk(cudaEventCreate(&stop));    \

  gpuErrChk(cudaEventRecord(start));    \

}

#define STOP_RECORD_TIMER(name) {                       \

  gpuErrChk(cudaEventRecord(stop));                 \

  gpuErrChk(cudaEventSynchronize(stop));            \

  gpuErrChk(cudaEventElapsedTime(&name, start, stop));  \

  gpuErrChk(cudaEventDestroy(start));               \

  gpuErrChk(cudaEventDestroy(stop));                \

}
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Events methods
cudaEventRecord - records that an event has occurred. 
Recording happens not at time of call but after all preceding 
operations on GPU have finished

cudaEventSynchronize - CPU waits for event to be 
recorded

cudaEventElapsedTime - compute time between recording 
of events
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Other stream/event methods
●  cudaStreamAddCallback
●  cudaStreamWaitEvent
●  cudaStreamQuery, cudaEventQuery
●  cudaDeviceSynchronize

Can also parameterize event recording to happen only after 
all preceding operations complete in a given stream (rather 
than in all streams)
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CPU/GPU communication

How do the CPU and GPU communicate?
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Virtual Memory
Could give a week of lectures on virtual memory…

Key idea: The memory addresses used in programs do not 
correspond to physical locations in memory. A program 
deals solely in virtual addresses. There is a table that maps 
(process id, address) to physical address.
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What does virtual memory gives us?
Each process can act like it is the only process running. 
The same virtual address in different processes can point 
to different physical addresses (and values).

Each process can use more than the total system memory. 
Store pages of data on disc if there is no room in physical 
memory.
Operating system can move pages around physical 
memory and disc as needed.
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Unified Virtual Addressing
On 64-bit OS with GPU of CC >= 2.0, GPU pointers live in 
disjoint address space from CPU. Makes it possible to 
figure out which memory an address lives on at runtime.

NVIDIA calls it unified virtual addressing (UVA)

cudaMemcpy(dst, src, size, cudaMemcpyDefault), no 
need to specify cudaMemcpyHostToDevice or etc.
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Virtual memory and GPU
To move data from CPU to GPU, the GPU must access 
data on host. GPU is given virtual address.

2 options:
(1) for each word, have the CPU look up physical address 

and then perform copy. slow!
(2) tell the OS to keep a page at a fixed location (pinning). 

Directly access physical memory on host from GPU 
(direct memory access a.k.a. DMA). fast!
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Memcpy
cudaMemcpy(Async):

Pin a host buffer in the driver.
Copy data from user array into pinned buffer.
Copy data from pinned buffer to GPU.
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Command buffers (diagram courtesy of CUDA Handbook)
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pinned host memory

Commands communicated by circular buffer.
Host writes, device reads.



cudaMallocHost allocates pinned memory on the host.
cudaFreeHost to free.

Advantages:
(1) can dereference pointer to pinned host buffers on 

device! Lots of PCI-Express (PCI-E) traffic :(
(2) cudaMemcpy is considerably faster when copying 

to/from pinned host memory.
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Taking advantage of pinning



Pinned host memory use cases 
● only need to load and store data once
● self-referential data structures that are not easy to copy 

(such as a linked list)
● deliver output as soon as possible (rather than waiting 

for kernel completion and memcpy)

Must synchronize and wait for kernel to finish before 
accessing kernel result on host.
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Disadvantages of pinning
Pinned pages limit freedom of OS memory management.
cudaMallocHost will fail (due to no memory available) 
long before malloc.

Coalesced accesses are extra important while accessing 
pinned host memory.

Potentially tricky concurrency issues.
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Unified (managed) memory
You can think of unified/managed memory as “smart 
pinned memory”. Driver is allowed to cache memory on 
host or any GPU.

Available on CC >= 3.0

cudaMallocManaged/cudaFree
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Unified memory uses & advantages
Same use cases as pinned host memory, but also very 
useful for prototyping (because it’s very easy).

You’ll likely be able to output perform managed memory 
with tuned streams/async memcpy’s, but managed memory 
gives solid performance for very little effort.

Future hardware support (NVLink, integrated GPUs)
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