
CS 179 Lecture 13
Host-Device Data Transfer

1

Moving data is slow
So far we’ve only considered performance when the data is
already on the GPU

This neglects the slowest part of GPU programming:
getting data on and off of GPU

2

Moving data is important
Intelligently moving data allows processing data larger than
GPU global memory (~6GB)

Absolutely critical for real-time or streaming applications
(common in computer vision, data analytics, control
systems)

3

Matrix transpose: another look
Time(%) Time Calls Avg Name

49.35% 29.581ms 1 29.581ms [CUDA memcpy DtoH]

47.48% 28.462ms 1 28.462ms [CUDA memcpy HtoD]

3.17% 1.9000ms 1 1.9000ms naiveTransposeKernel

Only 3% of time spent in kernel! 97% of time spent
moving data onto and off GPU!

4

Lecture Outline

● IO strategy
● CUDA streams
● CUDA events
● How it all works: virtual memory, command

buffers
● Pinned host memory
● Managed memory

5

A common pattern
while (1) {

cudaMemcpy(d_input, h_input, input_size)

kernel<<<grid, block>>>(d_input, d_output)

cudaMemcpy(output, d_output, output_size)

}

Throughput limited by IO!
How can we hide the latency?

6

Dreams & Reality

HD 0

kernel 0

DH 0

HD 1

kernel 1

DH 1

HD 2

kernel 2

Reality
HD 0

HD 1 kernel 0

HD 2 kernel 1 DH 0

HD 3 kernel 2 DH 1

HD 4 kernel 3 DH 2

HD 5 kernel 4 DH 3

HD 6 kernel 5 DH 4

HD 7 kernel 6 DH 5

Dreamstime

7

Turning dreams into reality

What do we need to make the dream happen?
● hardware to run 2 transfers and 1 kernel in parallel
● 2 input buffers
● 2 output buffers
● asynchronous memcpy & kernel invocation

easy, up to programmer

8

Latency hiding checklist

Hardware:
● maximum of 4, 16, or 32 concurrent kernels

(depending on hardware) on CC >= 2.0
● 1 device→host copy engine
● 1 host→device copy engine
(2 copy engines only on newer hardware, some hardware
has single copy engine shared for both directions)

9

Asynchrony
An asynchronous function returns as soon is it called.

There is generally an interface to check if the function is
done and to wait for completion.

Kernel launches are asynchronous.
cudaMemcpy is not.

10

cudaMemcpyAsync

Convenient asynchronous memcpy! Similar arguments to
normal cudaMemcpy.

while (1) {

cudaMemcpyAsync(d_in, h_in, in_size)

kernel<<<grid, block>>>(d_in, d_out)

cudaMemcpyAsync(out, d_out, out_size)

}

Can anyone think of any issues with this code?
11

CUDA Streams
In previous example, need cudaMemcpyAsync to finish
before kernel starts. Luckily, CUDA already does this.

Streams let us enforce ordering of operations and express
dependencies.

Useful blog post describing streams

12

http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

The null / default stream
When stream is not specified, operation only starts after all
other GPU operations have finished.
CPU code can run concurrently with default stream.

13

Stream example
cudaStream_t s[2];

cudaStreamCreate(&s[0]); cudaStreamCreate(&s[1]);

for (int i = 0; i < 2; i++) {

kernel<<<grid, block, shmem, s[i]>(d_outs[i], d_ins[i]);

cudaMemcpyAsync(h_outs[i], d_outs[i], size, dir, s[i]);

}

for (int i = 0; i < 2; i++) {

cudaStreamSynchronize(s[i]);

cudaStreamDestroy(s[i]);

}

kernels run in parallel!

14

CUDA events
Streams synchronize the GPU (but can synchronize
CPU/GPU with cudaStreamSynchronize)

Events are simpler way to enforce CPU/GPU
synchronization.

Also useful for timing!

15

Events example
#define START_TIMER() { \

 gpuErrChk(cudaEventCreate(&start)); \

 gpuErrChk(cudaEventCreate(&stop)); \

 gpuErrChk(cudaEventRecord(start)); \

}

#define STOP_RECORD_TIMER(name) { \

 gpuErrChk(cudaEventRecord(stop)); \

 gpuErrChk(cudaEventSynchronize(stop)); \

 gpuErrChk(cudaEventElapsedTime(&name, start, stop)); \

 gpuErrChk(cudaEventDestroy(start)); \

 gpuErrChk(cudaEventDestroy(stop)); \

}

16

Events methods
cudaEventRecord - records that an event has occurred.
Recording happens not at time of call but after all preceding
operations on GPU have finished

cudaEventSynchronize - CPU waits for event to be
recorded

cudaEventElapsedTime - compute time between recording
of events

17

Other stream/event methods
● cudaStreamAddCallback
● cudaStreamWaitEvent
● cudaStreamQuery, cudaEventQuery
● cudaDeviceSynchronize

Can also parameterize event recording to happen only after
all preceding operations complete in a given stream (rather
than in all streams)

18

CPU/GPU communication

How do the CPU and GPU communicate?

19

Virtual Memory
Could give a week of lectures on virtual memory…

Key idea: The memory addresses used in programs do not
correspond to physical locations in memory. A program
deals solely in virtual addresses. There is a table that maps
(process id, address) to physical address.

20

What does virtual memory gives us?
Each process can act like it is the only process running.
The same virtual address in different processes can point
to different physical addresses (and values).

Each process can use more than the total system memory.
Store pages of data on disc if there is no room in physical
memory.
Operating system can move pages around physical
memory and disc as needed.

21

Unified Virtual Addressing
On 64-bit OS with GPU of CC >= 2.0, GPU pointers live in
disjoint address space from CPU. Makes it possible to
figure out which memory an address lives on at runtime.

NVIDIA calls it unified virtual addressing (UVA)

cudaMemcpy(dst, src, size, cudaMemcpyDefault), no
need to specify cudaMemcpyHostToDevice or etc.

22

Virtual memory and GPU
To move data from CPU to GPU, the GPU must access
data on host. GPU is given virtual address.

2 options:
(1) for each word, have the CPU look up physical address

and then perform copy. slow!
(2) tell the OS to keep a page at a fixed location (pinning).

Directly access physical memory on host from GPU
(direct memory access a.k.a. DMA). fast!

23

Memcpy
cudaMemcpy(Async):

Pin a host buffer in the driver.
Copy data from user array into pinned buffer.
Copy data from pinned buffer to GPU.

24

Command buffers (diagram courtesy of CUDA Handbook)
25

pinned host memory

Commands communicated by circular buffer.
Host writes, device reads.

cudaMallocHost allocates pinned memory on the host.
cudaFreeHost to free.

Advantages:
(1) can dereference pointer to pinned host buffers on

device! Lots of PCI-Express (PCI-E) traffic :(
(2) cudaMemcpy is considerably faster when copying

to/from pinned host memory.

26

Taking advantage of pinning

Pinned host memory use cases
● only need to load and store data once
● self-referential data structures that are not easy to copy

(such as a linked list)
● deliver output as soon as possible (rather than waiting

for kernel completion and memcpy)

Must synchronize and wait for kernel to finish before
accessing kernel result on host.

27

Disadvantages of pinning
Pinned pages limit freedom of OS memory management.
cudaMallocHost will fail (due to no memory available)
long before malloc.

Coalesced accesses are extra important while accessing
pinned host memory.

Potentially tricky concurrency issues.
28

Unified (managed) memory
You can think of unified/managed memory as “smart
pinned memory”. Driver is allowed to cache memory on
host or any GPU.

Available on CC >= 3.0

cudaMallocManaged/cudaFree

29

Unified memory uses & advantages
Same use cases as pinned host memory, but also very
useful for prototyping (because it’s very easy).

You’ll likely be able to output perform managed memory
with tuned streams/async memcpy’s, but managed memory
gives solid performance for very little effort.

Future hardware support (NVLink, integrated GPUs)

30

