
CS 179 Lecture 6
Synchronization, Matrix Transpose,
Profiling, AWS Cluster

Synchronization
Ideal case for parallelism:
● no resources shared between threads
● no communication between threads

Many algorithms that require just a little bit of resource
sharing can still be accelerated by massive parallelism of
GPU

Examples needing synchronization

(1) Block loads data into shared memory before
processing

(2) Summing a list of numbers

__syncthreads()

__syncthreads() synchronizes all threads in
a block.

Useful for “load data into shared memory
example”

No global equivalent of __syncthreads()

Atomic instructions: motivation
Two threads try to increment variable x=42 concurrently.
Final value should be 44.
Possible execution order:
thread 0 load x (=42) into register r0

thread 1 load x (=42) into register r1

thread 0 increment r0 to 43

thread 1 increment r1 to 43

thread 0 store r0 (=43) into x

thread 1 store r1 (=43) into x

Actual final value of x: 43
:(

Atomic instructions
An atomic instruction executes as a single unit, cannot be
interrupted.

Atomic instructions on CUDA
atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS,

 And, Or, Xor}

Syntax: atomicAdd(float *address, float val)

Work in both global and shared memory!

The fun world of parallelism
All of the atomic instructions can be implemented given
compare and swap:
atomicCAS(int *address, int compare, int val)

CAS is very powerful, can also implement locks, lock-free
data structures, etc.

Recommend Art of Multiprocessor Programming to learn
more

http://en.wikipedia.org/wiki/Compare-and-swap
http://en.wikipedia.org/wiki/Compare-and-swap
http://www.amazon.com/Art-Multiprocessor-Programming-Revised-Reprint/dp/0123973376/ref=sr_1_1?ie=UTF8&qid=1428675051&sr=8-1

Warp-synchronous programming

What if I only need to synchronize between all
threads in a warp?
Warps are already synchronized!

Can save unneeded __syncthreads() use,
but code is fragile and can be broken by
compiler optimizations.

Warp vote & warp shuffle
Safer warp-synchronous programming (and doesn’t use
shared memory)

Warp vote: __all, __any, __ballot

int x = threadIdx.x; // goes from 0 to 31
__any(x < 16) == true;
__all(x < 16) == false;

__ballot(x < 16) == (1 << 16) - 1;

Warp shuffle
Read value of register from another thread in warp.

int __shfl(int var, int srcLane, int width=warpSize)

Extremely useful to compute sum of values across a warp
(and other reductions, more next time)

First available on Kepler (no Fermi, only CC >= 3.0)

(Synchronization) budget advice
Do more cheap things and fewer expensive things!

Example: computing sum of list of numbers

Naive:
each thread atomically increments each number to
accumulator in global memory

Sum example

Smarter solution:
● each thread computes its own sum in register
● use warp shuffle to compute sum over warp
● each warp does a single atomic increment to

accumulator in global memory

Set 2
(1) Questions on latency hiding, thread divergence,

coalesced memory access, bank conflicts, instruction
dependencies

(2) Putting it into action: optimizing matrix transpose. Need
to comment on all non-coalesced memory accesses
and bank conflicts in code.

Matrix transpose
A great IO problem, because you have a stride 1 access
and a stride n access.

Transpose is just a fancy memcpy, so memcpy provides a
great performance target.

Matrix Transpose
__global__
void naiveTransposeKernel(const float *input, float *output, int n) {
 // launched with (64, 16) block size and (n / 64, n / 64) grid size
 // each block transposes a 64x64 block

 const int i = threadIdx.x + 64 * blockIdx.x;
 int j = 4 * threadIdx.y + 64 * blockIdx.y;
 const int end_j = j + 4;

 for (; j < end_j; j++) {
output[j + n * i] = input[i + n * j];

 }

}

Shared memory & matrix transpose
Idea to avoid non-coalesced accesses:
● Load from global memory with stride 1
● Store into shared memory with stride x
● __syncthreads()
● Load from shared memory with stride y
● Store to global memory with stride 1

Choose values of x and y perform the transpose.

Avoiding bank conflicts
You can choose x and y to avoid bank conflicts.

A stride n access to shared memory avoids bank conflicts
iff gcd(n, 32) == 1.

Two versions of the same kernel
You have to write 2 kernels for the set:

(1) shmemTransposeKernel. This should have all of the
optimizations with memory access I just talked about.

(2) optimalTransposeKernel. Build on top of
shmemTransposeKernel, but include any optimizations
tricks that you want.

Possible optimizations
● Reduce & separate instruction dependencies (and

everything depends on writes)
● Unroll loops to reduce bounds checking overhead
● Try rewriting your code to use 64-bit or 128-bit loads

(with float2 or float4)
● Take a warp-centric approach rather than block-centric

and use warp shuffle rather than shared memory (will
not be built on top of shmemTranspose). I’ll allow you to
use this as a guide

http://www.pixel.io/blog/2013/3/25/fast-matrix-transposition-on-kepler-without-using-shared-mem.html

Profiling
profiling = analyzing where program spends time
Putting effort into optimizing without profiling is foolish.

There is a great visual (GUI) profiler for CUDA called nvpp,
but using it is a bit of a pain with a remote GPU.

nvprof is the command line profiler (works on minuteman)
so let’s check that out!

nvprof demo

If you didn’t catch the demo in class (or even if you did),
this blog post and the guide will be useful.

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

Profiler tips
List all profiler events with nvprof --query-events and all metrics with
nvprof --query-metrics.

Many useful metrics, some good ones are acheived_occupancy, ipc,
shared_replay_overhead, all of the utilizations, all of the throughputs.

Some useful events are global_ld_mem_divergence_replays,
global_st_mem_divergence_replays, shared_load_replay,
shared_store_replay

Profile example (1)
[emartin@minuteman:~/set2]> nvprof --events
global_ld_mem_divergence_replays,global_st_mem_divergence_replays --
metrics achieved_occupancy ./transpose 4096 naive

==11043== NVPROF is profiling process 11043, command: ./transpose 4096
naive

==11043== Warning: Some kernel(s) will be replayed on device 0 in order
to collect all events/metrics.

Size 4096 naive GPU: 33.305279 ms

==11043== Profiling application: ./transpose 4096 naive

==11043== Profiling result:

==11043== Event result:

Profile example (2)
Invocations Event Name Min Max Avg

Device "GeForce GTX 780 (0)"

 Kernel: naiveTransposeKernel(float const *, float*, int)

 1 global_ld_mem_divergence_replays 0 0 0

 1 global_st_mem_divergence_replays 16252928 16252928 16252928

==11043== Metric result:

Invocations Metric Name Metric Description
Min Max Avg

Device "GeForce GTX 780 (0)"

 Kernel: naiveTransposeKernel(float const *, float*, int)

 1 achieved_occupancy Achieved Occupancy
0.862066 0.862066 0.862066

Profiling interpretation
Lots of non-coalesced stores, 83% occupancy for naive
kernel transpose

Amazon Cluster
Submit jobs with qsub. You must specify -l gpu=1 for cuda
>qsub -l gpu=1 job.sh

Binaries can be run directly if the binary option is specified
>qsub -l gpu=1 -b y ./program

Script and binaries are run in your homedir by default. Use
the -cwd option to run in the current folder
~/set10/files/>qsub -l gpu=1 -cwd job.sh

Amazon Cluster (2)
View running jobs with qstat
>qstat

The stdout and stderr are in stored in files after the job
completes. These files have the job number appended.
>qsub -l gpu=1 -cwd job.sh

>ls

job.sh.o5

job.sh.e5

Amazon Cluster (3)
Login requires ssh keys
>ssh -i user123.rsa user123@54.163.37.252

Can also use the url instead of the ip
ec2-54-163-37-252.compute-1.amazonaws.com

Windows users must use puttygen to convert to putty
format
Keys will be distributed to each haru account

http://ec2-54-163-37-252.compute-1.amazonaws.com
http://ec2-54-163-37-252.compute-1.amazonaws.com

