
CS 179 Lecture 5
GPU Memory Systems
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Last time
● A block executes on a single streaming multiprocessor 

(SM).
● Threads execute in groups of 32 called warps.
● Want threads in a warp to do the same thing to avoid 

divergence.
● SMs hide latency by executing instructions for multiple 

warps at once.
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Last time
● Minimize instruction dependencies to take advantage of 

instruction level parallelism (ILP)
● Occupancy allows us to reason about how well we are 

using hardware (but higher occupancy isn’t always 
better)
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Final notes on compute
● Integer instructions (especially / and %) slow
● GPUs have >4GB of RAM, so pointers are 64 bits :(
● All instructions have dependencies on previous writes to 

memory
● CPU hyper-threading is similar to what GPU does. 2 

concurrent hyper threads processing 16 elements (AVX-
512) on CPU rather than 64 concurrent warps 
processing 32 elements on SM
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Clarification on dependencies
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x0 = x[0];
y0 = y[0];
z0 = x0 + y0;

x1 = x[1];
y1 = y[1];

z1 = x1 + y1;

An instruction cannot start 
executing until

(1) all of its dependencies have 
finished executing

(2) all of the instructions before it 
have at least started executing 
(which mean dependencies for 
all previous instructions are 
met)



GPU Memory Breakdown

● Global memory & local memory
● Shared memory & L1 cache
● Registers
● Constant memory
● Texture memory & read-only cache (CC 3.5)
● L2 cache
Memory types implemented on same hardware 
are grouped. 6



Memory Scope

constant memory
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Global Memory
Global memory is the “main” memory of the GPU. It has 
global scope and lifetime of the allocating program (or until 
cudaFree is called).

Global memory is similar to the heap in a C program.  
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Global Memory syntax
Allocate with 

cudaMalloc(void** devPtr, size_t size)

Free with
cudaMalloc(void* devPtr)
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Nvidia GeForce GTX 780

Green box is GK110, red lines are global memory
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Global memory is separate hardware from the GPU core (containing SM’s, 
caches, etc).

The vast majority of memory on GPU is global memory. If data doesn’t fit into 
global memory, you are going to have process it in chunks that do fit in global 
memory.

GPUs have .5 - 24GB of global memory, with most now having ~2GB.

Global memory latency is ~300ns on Kepler and ~600ns on Fermi

Global Memory Hardware
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Accessing global memory efficiently
IO often dominates computation runtime, and global 
memory IO is the slowest form of IO on GPU (except for 
accessing host memory).

Because of this, we want to access global memory as little 
as possible.

Access patterns that play nicely with GPU hardware are 
called coalesced memory accesses.
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Memory Coalescing
Memory coalescing is a bit more complicated in reality (see 
Ch 5.2 of CUDA Handbook), but there’s 1 simple thing to 
remember that will lead to coalesced accesses:

GPU cache lines are 128 bytes and are aligned. Try to 
make all memory accesses by warps touch the minimum 
number of cache lines (ideally 1 for 4 byte / warp 
accesses).
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Two different non-coalesced accesses

touches 2 cache lines touches 3 cache lines
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Misalignment can cause non-coalesced access
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A coalesced access!
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Shared Memory
● Very fast memory located in the SM
● Same hardware as L1 cache, ~5ns of latency
● Maximum size of 48KB, but user configurable
● Scope of shared memory is the block

Remember
SM = streaming multiprocessor

SM ≠ shared memory
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Shared memory syntax
Can allocate shared memory statically (size known at 
compile time) or dynamically (size not known until runtime)

Static allocation syntax:
__shared__ float data[1024]; declaration in kernel, 
nothing in host code
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Shared memory dynamic allocation
Host:

kernel<<<grid, block, numBytesShMem>>>(arg);

Device (in kernel):
extern __shared__ float s[];

Some complexities with multiple dynamically sized 
variables, see this blog post
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http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/


A shared memory application
Task: Compute byte frequency counts
Input: array of bytes of length n
Output: 256 element array of integers containing number of

   occurrences of each byte

Naive: build output in global memory, n global stores
Smart: build output in shared memory, copy to global 
memory at end, 256 global stores
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Computational Intensity
Computational intensity = FLOPs / IO

Matrix multiplication: n3 / n2 = n
n-body simulation: n2 / n = n

If computational intensity is > 1, then same data used in 
more than 1 computation. Do as few global loads and as 
many shared loads as possible.
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A common pattern in kernels

(1) copy from global memory to shared memory
(2) __syncthreads()
(3) perform computation, incrementally storing 

output in shared memory, __syncthreads() 
as necessary

(4) copy output from shared memory to output 
array in global memory
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Bank Conflicts
Shared memory consists of 32 banks of width 4 bytes.
Element i is in bank i % 32.

A bank conflict occurs when 2 threads in a warp access 
different elements in the same bank.

Bank conflicts cause serial memory accesses rather than 
parallel, are bad for performance.
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Bank conflict examples

Left: Conflict free with stride 1

Center: 2-way bank conflict due to stride 2

Right: Conflict free with stride 3
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More bank conflict examples

Left: conflict-free

Center: conflict-free because same element 
accessed in bank 5

Right: conflict-free because same element 
accessed in banks 12 and 20. Broadcasting 
occurs.
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Stride 1 ⇒ 32 x 1-way “bank conflicts” (so conflict-free)
Stride 2 ⇒ 16 x 2-way bank conflicts
Stride 3 ⇒ 32 x 1-way “bank conflicts” (so conflict-free)
Stride 4 ⇒ 8 x 4-way bank conflicts
…
Stride 32 ⇒ 1 x 32-way bank conflict :(

Can anyone think of a way to modify the data to have 
conflict-free access in the stride 32 case?

Bank conflicts and strides
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Padding to avoid bank conflicts
To fix the stride 32 case, we’ll waste a byte on padding and 
make the stride 33 :)

Don’t store any data in slots 32, 65, 98, ....
Now we have
thread 0 ⇒ index 0 (bank 0)
thread 1 ⇒ index 33 (bank 1)
thread i ⇒ index 33 * i (bank i)
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Bank conflicts and coalescing
Bank conflicts are the “noncoalesced access” equivalent for shared memory.

Note stride 1 accesses are both conflict-free and coalesced.

In the “load from global, store into shared, do quadratic computation on shared 
data” pattern, you sometimes have to choose between noncoalesced loads or 
bank conflicts on stores. Generally bank conflicts on stores will be faster, but it’
s worth benchmarking. The important thing is that the shared memory loads in 
the “quadratic computation” part of the code are conflict-free (because there are 
more of these loads than either other operation).
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Registers
Fastest “memory” possible, about 10x faster than shared 
memory

Most stack variables declared in kernels are stored in 
registers (example: float x).

Statically indexed arrays stored on the stack are sometimes 
put in registers
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Local Memory
Local memory is everything on the stack that can’t fit in 
registers. The scope of local memory is just the thread.

Local memory is stored in global memory (much slower 
than registers!)
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Register spilling example
Recall coordinate addition from 
previous lecture.

When we have enough registers, this 
code does 4 loads from local memory 
and 0 stores.

Now assume we only have 3 free 
registers before any of this code is 
executed (but don’t worry about z0 
and z1)

x0 = x[0];

y0 = y[0];

x1 = x[1];

y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

31



Register spilling example
x0 = x[0];

y0 = y[0];

x1 = x[1];

y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

starting with only 
3 free registers...

cannot load y[1] until we 
free a register. store x1 to 
make space.

Now we need to load x1 
again.

Register spilling cost:
1 extra load
1 extra store
2 extra pairs of consecutive
   dependent instructions 
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L1 Cache

● Fermi - caches local & global memory
● Kepler, Maxwell - only caches local memory
● same hardware as shared memory
● configurable size (16, 32, 48KB)
● each SM has its own L1 cache
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L2 cache

● caches all global & local memory accesses
● ~1MB in size
● shared by all SM’s
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Constant Memory
● Used for constants that cannot be compiled into 

program
● Constants must be set from host before running kernel.
● Constant memory is global memory with a special 

cache
● 64KB for user, 64KB for compiler (kernel arguments are 

passed through constant memory)
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Constant Cache

8KB cache on each SM specially designed to 
broadcast a single memory address to all 
threads in a warp (called static indexing)

Can also load any statically indexed data 
through constant cache using “load uniform” 
(LDU) instruction
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Constant memory syntax
In global scope (outside of kernel, at top level of program):

__constant__ int foo[1024];

In host code:

cudaMemcpyToSymbol(foo, h_src, sizeof(int) * 1024);
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Texture Memory
Complicated and only marginally useful for general purpose computation
Useful characteristics:
● 2D or 3D data locality for caching purposes through “CUDA arrays”. Goes 

into special texture cache.
● fast interpolation on 1D, 2D, or 3D array
● converting integers to “unitized” floating point numbers

Use cases:
(1) Read input data through texture cache and CUDA array to take advantage 

of spatial caching. This is the most common use case.
(2) Take advantage of numerical texture capabilities.
(3) Interaction with OpenGL and general computer graphics
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Texture Memory

And that’s all we’re going to say on texture 
memory for now, more on future set!

It’s a complex topic, you can learn everything 
you want to know about it from CUDA 

Handbook Ch 10
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Read-Only Cache
Many CUDA programs don’t use textures, but we should take advantage of the 
texture cache hardware.

CC ≥ 3.5 makes it much easier to use texture cache.

Many const restrict variables will automatically load through texture cache 
(also called read-only cache).
Can also force loading through cache with __ldg intrinsic

Differs from constant memory because doesn’t require static indexing
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Extra topic: vectorized IO
Besides vectorizing over the 32 threads in a warp, CUDA 
has instructions for each thread to do 64 or 128 bit 
loads/stores (rather than standard 32 bit transactions).

These transactions happen whenever an appropriately 
sized and aligned type is dereferenced. Alignment 
requirements are equal to type size, so a double must be 
8 byte aligned, float4 must be 16 byte aligned, etc.
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Compute & IO Throughput
GeForce GTX Titan Black (GK110 based)
Compute throughput 5 TFLOPS (single precision)

Global memory bandwidth 336 GB/s (84 Gfloat/s)

Shared memory bandwidth 3.4 TB/s (853 Gfloat/s)

GPU is very IO limited! IO is very often the throughput bottleneck, so its 
important to be smart about IO.

If you want to get beyond ~900 GFLOPS, need to do multiple FLOPs per 
shared memory load.

cuBLAS obtains about 4 TFLOPS on this GPU. Utilization is hard! 42


