
CS 179: GPU Programming

Lecture 1: Introduction

Images: http://en.wikipedia.org

http://www.pcper.com

http://northdallasradiationoncology.com/

GPU Gems (Nvidia)



The Problem

• Are our computers fast enough?

Source: XKCD Comics (http://xkcd.com/676/)



The Problem

• Are our computers really fast enough?

http://lauraskelton.github.io/images/posts/5deepnetworklayer.png

http://www.dmi.unict.it/nicosia/research/proteinFolding3.png

http://www.cnet.com/



The Problem

• What does it mean to “solve” a computational 

problem?



The CPU

• The “central processing unit”

• Traditionally, applications use CPU for primary 

calculations

– Powerful, general-purpose capabilities

– R+D -> Moore’s Law!

– Established technology

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg



The GPU

• Designed for our “graphics”

• For “graphics problems”, much faster than the 

CPU!

• What about other problems?



This course in 30 seconds

• For certain problems, use

instead of

Images: http://www.nvidia.com, 

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg



This course in 60 seconds

• GPU: Hundreds of cores!

– vs. 2,4,8 cores on CPU

• Good for highly parallelizable problems:

– Increasing speed by 10x, 100x+



Questions

• What is a GPU?

• What is a parallelizable problem?

• What does GPU-accelerated code look like?

• Who cares?



Outline

• Motivations

• Brief history

• “A simple problem”

• “A simple solution”

• Administrivia



GPUs – The Motivation

• Screens!

– 1e5 – 1e7 pixels

• Refresh rate: ~60 Hz

• Total: ~1e7-1e9 pixels/sec !

• (Very approximate – orders of magnitude)



GPUs – The Motivation

• Lots of calculations are 

“the same”!

• e.g. Raytracing:

– Goal: Trace light rays, calculate object interaction 
to produce realistic image

– f

Superquadric Cylinders, exponent 0.1, yellow glass balls, Barr, 1981

Watt, 3D Computer Graphics (from 

http://courses.cms.caltech.edu/cs171/)



GPUs – The Motivation

• Lots of calculations are 

“the same”!

• e.g. Raytracing:
for all pixels (i,j):

Calculate ray point and direction in 3d space

if ray intersects object:

calculate lighting at closest object

store color of (i,j)

Superquadric Cylinders, exponent 0.1, yellow glass balls, Barr, 1981



GPUs – The Motivation

• Lots of calculations are 

“the same”!

• e.g. Simple shading:
for all pixels (i,j):

replace previous color with new color 
according to rules

"Example of a Shader" by TheReplay - Taken/shaded with YouFX webcam 

software, composited next to each other in Photoshop. Licensed under 

CC BY-SA 3.0 via Wikipedia -

http://en.wikipedia.org/wiki/File:Example_of_a_Shader.png#/media/Fil

e:Example_of_a_Shader.png



GPUs – The Motivation

• Lots of calculations are 

“the same”!

• e.g. Transformations (camera, perspective, …):
for all vertices (x,y,z) in scene:

Obtain new vertex (x’,y’,z’) = T(x,y,z)

h



Outline

• Motivations

• Brief history

• “A simple problem”

• “A simple solution”

• This course



GPUs – Brief History

• Fixed-function pipelines

– Pre-set functions, limited 

options

http://gamedevelopment.tutsplus.com/articles/the-end-

of-fixed-function-rendering-pipelines-and-how-to-move-

on--cms-21469

Source: Super Mario 64, by Nintendo



GPUs – Brief History

• Shaders

– Could implement one’s own functions!

– GLSL (C-like language)

– Could “sneak in” general-purpose programming!

http://minecraftsix.com/glsl-shaders-mod/



GPUs – Brief History

• CUDA (Compute Unified Device Architecture)

– General-purpose parallel computing platform for 

NVIDIA GPUs

• OpenCL (Open Computing Language)

– General heterogenous computing framework

• …

• Accessible as extensions to C! (and other 

languages…)



GPUs Today

• “General-purpose computing on GPUs” 

(GPGPU)



Demonstrations



Outline

• Motivations

• Brief history

• “A simple problem”

• “A simple solution”

• This course



A simple problem…

• Add two arrays

– A[] + B[] -> C[]

• On the CPU:
float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

– Operates sequentially… can we do better?



A simple problem…

• On the CPU (multi-threaded, pseudocode):
(allocate memory for C)

Create # of threads equal to number of cores on processor 
(around 2, 4, perhaps 8)

(Indicate portions of A, B, C to each thread...)

...

In each thread,

For (i from beginning region of thread)

C[i] <- A[i] + B[i]

//lots of waiting involved for memory reads, writes, ...

Wait for threads to synchronize...

– Slightly faster – 2-8x (slightly more with other 
tricks)



A simple problem…

• How many threads? How does performance 

scale?

• Context switching:

– High penalty on the CPU

– Low penalty on the GPU



• On the GPU:
(allocate memory for A, B, C on GPU)

Create the “kernel” – each thread will perform one (or a few) 
additions

Specify the following kernel operation:

For (all i‘s assigned to this thread)

C[i] <- A[i] + B[i]

Start ~20000 20000 20000 20000 (!) (!) (!) (!) threads

Wait for threads to synchronize...

A simple problem…



GPU: Strengths Revealed

• Parallelism / lots of cores

• Low context switch penalty!

– We can “cover up” performance loss by creating 

more threads!



Outline

• Motivations

• Brief history

• “A simple problem”

• “A simple solution”

• This course



GPU Computing: Step by Step

• Setup inputs on the host (CPU-accessible memory)

• Allocate memory for inputs on the GPU

• Allocate memory for outputs on the host

• Allocate memory for outputs on the GPU

• Copy inputs from host to GPU

• Start GPU kernel

• Copy output from GPU to host

• (Copying can be asynchronous)



The Kernel

• Our “parallel” function

• Simple implementation



Indexing

• Can get a block ID and thread ID within the 

block:

– Unique thread ID!



Calling the Kernel



Calling the Kernel (2)



Summary

• For many highly parallelizable problems…

– GPU offers massive performance increase!

• Making difficult problems easy

• Putting impossible problems within reach



Outline

• Motivations

• Brief history

• “A simple problem”

• “A simple solution”

• This course



This Course

• General topics:

– GPU computing /parallelization

• Audio, linear algebra, medical engineering, 

machine learning, finance, …

– CUDA (parallel computing platform)

– Libraries, optimizations, etc

• Prerequisites:

– C/C++ knowledge



Administrivia

• Course Instructors/TA’s:

– Kevin Yuh (kyuh@caltech.edu)

– Eric Martin (emartin@caltech.edu)

• CS179: GPU Programming

– Website: http://courses.cms.caltech.edu/cs179/

• Overseeing Instructor:

– Al Barr (barr@cs.caltech.edu)

• Class time:

– ANB 107, MWF 3:00 PM



Course Requirements

• Option 1:

– Homework:

• 7 assignments

• Each worth 10% of grade

• Due Wednesdays, 5 PM 3 PM (chg’d 4/3/2015)

– Final project:

• 3-week project

• 30% of grade



Course Requirements

• Option 2:

– Homework:

• 5 assignments

• Each worth 10% of grade

• Due Wednesdays, 5 PM 3 PM (chg’d 4/3/2015)

– Final project:

• 5-week project

• 50% of grade

– Difference: Exchange sets 6,7 for more time on 

project



Projects

• Topic – your choice!

• Project scale

– 5-week projects: Significantly more extensive

• Solo or pairs

– Expectations set accordingly

• Idea generation:

– Keep eyes open!

– Talk to us

– We hope to bring guests!



Administrivia

• Collaboration policy:

– Discuss ideas and strategies freely, but all code 

must be your own

– “50 foot rule” (in spirit) – don’t consult your code 

when helping others with their code



Administrivia

• Office Hours: Located in ANB 104

– Kevin: Mondays, 9-11 PM

– Eric: Tuesdays, 7-9 PM

• Extensions on request

– Talk to TAs



Machines

• Primary machines (multi-GPU, remote access):

haru.caltech.edu

mako.caltech.edu (pending)

• E-mail me your preferred username!

• Change your password

– Separately on each machine (once mako is up)

– Use passwd command



Machines

• Secondary (CMS) machines:

mx.cms.caltech.edu

minuteman.cms.caltech.edu

• Use your CMS login

• Not all assignments work here!



Machines

• Alternative: Use your own! (Harder):

– Must have an NVIDIA CUDA-capable GPU

– Virtual machines won’t work!

• Exception: Machines with I/O MMU virtualization and 

certain GPUs

– Special requirements for:

• Hybrid/optimus systems

• Mac/OS X

• Setup is difficult! (But we have some instructions)

• May need to modify assignment makefiles



Final remarks for the day…

"Three RAAF FA-18 Hornets in formation after 

refueling" by U.S. Air Force photo by Senior 

Airman Matthew Bruch -

http://www.flickr.com/photos/pacificairforces/84



Welcome to the course!


