(S179: GPU PROGRAMMING

RECITATION 2

MAIN REQUIREMENTS FOR GPU PERFORMANCE

Sufficient parallelism
* Latency hiding and occupancy
* Instruction-level parallelism

* Coherent execution within warps of thread

Efficient memory usage
* Coalesced memory access for global memory

* Shared memory and bank conflicts

LATENCY HIDING

|dea: have enough warps to keep the GPU busy during the waiting time.

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

]' Processing
m) I Waiting for data

Ready to be processed
CPU core - Low Latency Processor

IS CUHEND CHNEEE IR |) cortoxtswich

l LOOP UNROLLING AND ILP

for (1 = 0; 1 < 10; i++) { * Reduce loop overhead
output[i] = a[i] + b[1]; * Increase parallelism when each
} iteration of the loop is
\ independent
* Can increase register usage

output[@] = a[@] + b[O];

output[1l] = a[l1l] + b[1];

output[2] = a[2] + b[2];

SYNCHRONIZATION

__syncthreads()

* Synchronizes all threads in a block

* Warps are already synchronized! (Can reduce __syncthreads() calls)

Atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS,
And, Or, Xor}
* Works in global and shared memory

SYNCHRONIZATION ADVICE

Do more cheap things and fewer expensive things!
Example: computing sum of list of numbers

Naive:
each thread atomically increments each number to accumulator in global memory

Smarter solution:

® Each thread computes its own sum in register

® Use shared memory to sum across a block (Next week: Reduction)
® Each block does a single atomic increment in global memory

LAB 2

Part 1: Conceptual questions
1. Latency hiding
2. Thread divergence
3. Coalesced memory access
4,

Bank conflicts and instruction dependencies

Part 2: Matrix Transpose Optimization

1. Naive matrix transpose (given to you)
2. Shared memory matrix transpose

3. Optimal matrix transpose

Need to comment on all non-coalesced memory accesses and bank conflicts in provided kernel code

MATRIX TRANSPOSE

Index of the GPU with the lowest temperature: 1 (0 C)
Time limit for this program set to 10 seconds
Size 512 naive CPU: 0.640096 ms

An interesting IO problem, because you have Size 512 GPU memcpy: 0.023168 ms
a stride 1 access and a stride n access. Not Size 512 naive GPU: 0.046624 ms
. o . « ” Size 512 shmem GPU: 0.015232 ms
a trivial access pattern like “blur_v” from Size 512 optimal GPU: 0.011136 ms
Lab 1.

Size 1024 naive CPU: 3.255360 ms

Size 1024 GPU memcpy: 0.052736 ms

Size 1024 naive GPU: 0.111008 ms
The example output compares performance Size 1024 shmem GPU: 0. 036489 m
among CPU implementation and different Size 1024 optimal GPU: 0.035136 ms

GPU implementations. Size 2048 naive CPU: 36.584190 ms

Size 2048 GPU memcpy: 0.167488 ms
Size 2048 naive GPU: 0.387616 ms
Size 2048 shmem GPU: 0.138304 ms
Size 2048 optimal GPU: 0.136416 ms

Size 4096 naive CPU: 194.353149 ms
Size 4096 GPU memcpy: 0.541024 ms
Size 4096 naive GPU: 1.585984 ms
Size 4096 shmem GPU: 0.566432 ms
Size 4096 optimal GPU: 0.554560 ms

MATRIX TRANSPOSE

__global _

void naiveTransposeKernel(const float *input, float *output, int n) {
// launched with (64, 16) block size and (n / 64, n / 64) grid size
// each block transposes a 64x64 block

const int i = threadIdx.x + 64 * blockIdx.x;
int j = 4 * threadIldx.y + 64 * blockIdx.y;
const int end_j = j + 4;

for (; j < end_j; j++) {
output[j + n * i] = input[i + n * j];

}

SHARED MEMORY MATRIX TRANSPOSE

ldea to avoid non-coalesced accesses:
* Load from global memory with stride 1

* Store into shared memory with stride x
* __syncthreads()
* Load from shared memory with stride y

* Store to global memory with stride 1

Need to choose values of x and y to perform the transpose

EXAMPLE OF A SHARED MEMORY CACHE

Let’s populate shared memory with random integers. Here’s what the first 8 of 32 banks look
like:

EXAMPLE OF A SHARED MEMORY CACHE

Bank 7
Bank 6
Bank 5
Bank 4

Bank 3
Bank 2
Bank |
Bank O

No Bank conflicts when all threads read from
OK: the same bank

EXAMPLE OF A SHARED MEMORY CACHE

Bank 7
Bank 6
Bank 5
Bank 4

Bank 3
Bank 2
Bank |
Bank 0

OK: No Bank conflicts as long as each bank is only

accessed once.

EXAMPLE OF A SHARED MEMORY CACHE

Bank /
Bank 6
Bank 5
Bank 4

Bank 3
Bank 2
Bank |
Bank 0

Not OK: Multiple threads accessing the same
bank. Loads become serialized.

AVOIDING BANK CONFLICTS

You can choose X and y to avoid bank conflicts.

Remember that there are 32 banks and the GPU runs threads in batches
of 32 (called warps).

A stride n access to shared memory avoids bank conflicts
iff gcd(n, 32) == 1.

TA_UTILS.CPP

ta_utities.npp >« |

// TA Utilities.hpp
// Allow a shared computer to run smoothly when it is being used

Do NOT DELETE THIS CODE! //’; by students in a CUDA GPU programming course.

// TA_Utilities.cpp/hpp provide functions that programatically limit
// the execution time of the function and select the GPU with the

P Included in The UNIX VerSion // lowest temperature to use for kernel calls.
of this set

b b

#pragma once —

Inamespace TA_Utilities

® Should minimize lag or infinite {
. . Bl /* Create a child thread that will kill the parent thread after the
waits on GPU functlon CCI”S. specified time limit has been exceeded. UNIX only */
void enforce_time limit(int time_limit);
= /* Select the least utilized GPU on this system. Estimate
o Pleqse quve These funcﬁons in GPU utilization using GPU temperature. UNIX only. */
void select_coldest_GPU();

the code if you are using |
Titan/Haru/Maki ! iy

® Namespace TA_Urtilities

