
RECITATION 2
GPU Memory
Synchronization
Instruction-level parallelism
Latency hiding
Matrix Transpose

CS179: GPU PROGRAMMING

MAIN REQUIREMENTS FOR GPU PERFORMANCE

• Sufficient parallelism
• Latency hiding and occupancy
• Instruction-level parallelism
• Coherent execution within warps of thread

• Efficient memory usage
• Coalesced memory access for global memory
• Shared memory and bank conflicts

LATENCY HIDING

Idea: have enough warps to keep the GPU busy during the waiting time.

LOOP UNROLLING AND ILP

for (i = 0; i < 10; i++) {
output[i] = a[i] + b[i];
}

output[0] = a[0] + b[0];
output[1] = a[1] + b[1];
output[2] = a[2] + b[2];
…

• Reduce loop overhead
• Increase parallelism when each

iteration of the loop is
independent

• Can increase register usage

SYNCHRONIZATION

__syncthreads()
• Synchronizes all threads in a block
• Warps are already synchronized! (Can reduce __syncthreads() calls)

Atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS,
And, Or, Xor}

• Works in global and shared memory

SYNCHRONIZATION ADVICE

Do more cheap things and fewer expensive things!

Example: computing sum of list of numbers

Naive:
each thread atomically increments each number to accumulator in global memory

Smarter solution:
● Each thread computes its own sum in register
● Use shared memory to sum across a block (Next week: Reduction)
● Each block does a single atomic increment in global memory

LAB 2

Part 1: Conceptual questions
1. Latency hiding
2. Thread divergence
3. Coalesced memory access
4. Bank conflicts and instruction dependencies

Part 2: Matrix Transpose Optimization
1. Naïve matrix transpose (given to you)
2. Shared memory matrix transpose
3. Optimal matrix transpose

Need to comment on all non-coalesced memory accesses and bank conflicts in provided kernel code

MATRIX TRANSPOSE

An interesting IO problem, because you have
a stride 1 access and a stride n access. Not
a trivial access pattern like “blur_v” from
Lab 1.

The example output compares performance
among CPU implementation and different
GPU implementations.

MATRIX TRANSPOSE

__global__
void naiveTransposeKernel(const float *input, float *output, int n) {
// launched with (64, 16) block size and (n / 64, n / 64) grid size
// each block transposes a 64x64 block

const int i = threadIdx.x + 64 * blockIdx.x;
int j = 4 * threadIdx.y + 64 * blockIdx.y;
const int end_j = j + 4;

for (; j < end_j; j++) {
output[j + n * i] = input[i + n * j];
}

}

SHARED MEMORY MATRIX TRANSPOSE

Idea to avoid non-coalesced accesses:
• Load from global memory with stride 1
• Store into shared memory with stride x
• __syncthreads()
• Load from shared memory with stride y
• Store to global memory with stride 1

Need to choose values of x and y to perform the transpose

EXAMPLE OF A SHARED MEMORY CACHE

Let’s populate shared memory with random integers. Here’s what the first 8 of 32 banks look
like:

EXAMPLE OF A SHARED MEMORY CACHE

EXAMPLE OF A SHARED MEMORY CACHE

EXAMPLE OF A SHARED MEMORY CACHE

AVOIDING BANK CONFLICTS

You can choose x and y to avoid bank conflicts.

Remember that there are 32 banks and the GPU runs threads in batches
of 32 (called warps).

A stride n access to shared memory avoids bank conflicts
iff gcd(n, 32) == 1.

TA_UTILS.CPP

DO NOT DELETE THIS CODE!

● Included in the UNIX version
of this set

● Should minimize lag or infinite
waits on GPU function calls.

● Please leave these functions in
the code if you are using
Titan/Haru/Maki

● Namespace TA_Utilities

