
Noisy Bunny Points, derivation ... v0.2 1

Derivation, Least Squares for
Noisy Bunny Point Alignment

We will derive a linear system using least squares,
that will find the “best” 4x4 matrix

M

that will align N points (using translation and a
rotation-like linear transform) of a given dataset,
an “original” dataset, of 3D points, as 4x1 vectors
of (little) vector

~bk (k = 1 . . . N)

into the best match for a rotated, noisy version of
the same dataset of 3D points, also 4x1 vectors,
which we’ll call (big) vector

~Bk (k = 1 . . . N).

In addition, to use cuBLAS more effectively,
at times we will be changing notation, where a
summation of indexed items can be turned into
matrix operations, using matrix notation instead
of summation notation and vice versa.

As a “Rosetta stone” like reference for this,
we can relate the i-th element of column vector ~y,
which we’re letting to be a nonsquare matrix A
times column vector ~x, to be governed by the
following matrix and summation relations.

~y = A ~x

or

yi =
n∑

j=1

Aijxj , i = 1 . . .m

Note that the second subscript of matrix A
goes with the subscript of column vector ~x, and
the first subscript of A matches the subscript of
column vector ~y.

Likewise, if in matrix form,

C = A B

then in summation form,

Cij =
n∑

p=1

Aip Bpj

Note that the second subscript of matrix A
goes with the first subscript of matrix B in the
summation, and that the two subscripts of ma-
trix C match the first and last subscripts in the
summation expression.

This type of Rosetta-stone-like convention will
let you bounce back and forth between matrix
and summation conventions, without (as many)
transpose or other types of indexing problems,
which can help you relate mathematical matrix
notations and summations, to use in cuBLAS.

Back to the datasets.
The points are assumed to already be in cor-

respondence. Each point in the original dataset
~b and the noisy transformed version ~B is a 4x1
column vector of the form (little) vector

~b =


x
y
z
1

 , and

likewise, each point in the noisy, rotated dataset
is in the same form, (big) vector

~B =


X
Y
Z
1


So we’re trying to find the “best” 4x4 matrix M ,
balanced over all of the points, such that

M ~bk ≈ ~Bk

The 4x4 matrix M is assumed to have transla-
tion and a linear transform like rotation, but no
perspective transformation.

As a result the matrix M is of the form:

M =


m11 m12 m13 tx
m21 m22 m23 ty
m31 m32 m33 tz

0 0 0 1


where there are 12 independent variables.

Note that if we multiply it out,

M


x
y
z
1

 =


αx + t1
αy + t2
αz + t3

1


.

so we are transforming

 x
y
z

 by the 3x3 part of

M to get

 αx

αy

αz

, and then adding a translation

vector,

 t1
t2
t3

 for the total transformation.



Noisy Bunny Points, derivation ... v0.2 2

Now we are going to rename the variables in ma-
trix M so that they are more easily indexed. So
for us, now,

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1


where there are 12 independent variables, i.e., 12
unknown values of mij , where i = 1 . . . 3, and
j = 1 . . . 4.

With least squares, we create a net, total error
term E of squared differences, and then will min-
imize this by taking the partial derivative with
respect to the 12 unknowns.

If the alignment were perfect, then we would
find that for each k (and the same matrix M),
that the transformed original points would ex-
actly match the target points.

M ~bk = ~Bk

or would find that

M ~bk − ~Bk = 0

But due to the noise terms, we are expecting the
alignment NOT to be perfect, so we will define a
“k-th” difference vector,

~d
k

= M ~bk − ~Bk

The magnitude squared of this difference vector
is the vector dotted with itself, for each k.

|~d
k
|2 = ~d

k
· ~d

k

When summed this forms an objective function
“E” that measures the net error for us to min-
imize. So we add up all of these magnitude
squared values over k, to get a net error “E.”

E =
N∑
k=1

~d
k
· ~d

k

The error “E” is a function of the twelve un-
knowns, the twelve values of mij , where i =
1 . . . 3, and j = 1 . . . 4.

Before we take derivatives, let’s expand out
the dot product in terms of summations.

E =
N∑
k=1

4∑
i=1

di
k di

k

To find the optimal values, we take partial
derivatives of “E” with respect to each of these
twelve unknowns m`r, where ` = 1 . . . 3, and r =
1 . . . 4. This is also the gradient of “E.” Then we
set the result to zero and solve. We could also
use Deep Learning Frameworks like Theano or
Tensorflow to take the derivatives for us!

There will be many zero derivatives, since
the datapoints themselves don’t depend on the
unknowns m`r. The m`r factors are twelve
independent variables, so when they are dif-
ferent variables, the partial derivative of one with
respect to another is zero, and when they match,
then the partial derivative is 1.

The twelve partial derivatives of E become a
linear system to find the twelve unknown values of
m`r. We will also convert from summation form,
to “matrix” form, to use for cuBLAS.

So we take partial derivatives of E with re-
spect to m`r and set to zero, and then solve.

∂E

∂ m`r
= 2

N∑
k=1

4∑
i=1

(
∂ di

k

∂ m`r
)di

k

where ` = 1 . . . 3, and r = 1 . . . 4.
Now, the partial derivative of the k-th difference
vector is given by:

∂ ~d
k

∂ m`r
=

∂

∂ m`r
(M ~bk − ~Bk)

Let’s consider the i-th element of both sides,
using the “Rosetta Stone” approach for the ma-
trix multiplication to turn into a summation.

∂ di
k

∂ m`r
=

∂

∂ m`r
(

4∑
p=1

mip bp
k −Bi

k)

=
4∑

p=1

(
∂

∂ m`r
mip) bp

k

=
4∑

p=1

(δi`δpr) bp
k

where δij = 1, if i = j, and 0, if i 6= j.
These elements of matrix m are independent

variables, so a partial derivative of one with re-
spect to another is either zero or 1.

Then, as the next step, the p’s don’t con-
tribute unless p = r, so the sum goes away.

∂ di
k

∂ m`r
= δi` br

k



Noisy Bunny Points, derivation ... v0.2 3

So the partial derivatives of E become:

∂E

∂ m`r
= 2

N∑
k=1

4∑
i=1

(δi` br
k)di

k

But the i’s don’t contribute to the sum unless
` = i, so that sum goes away too!

∂E

∂ m`r
= 2

N∑
k=1

(br
k)d`

k

Let’s set to zero and divide by two.

N∑
k=1

(br
k)d`

k = 0

Now let’s substitute in the definition of the dif-
ference vector d`

k, where

d`
k = (M ~bk − ~Bk)`

= (
4∑

q=1

m`q bq
k)−B`

k

So the linear system for finding the unknown
m’s is

N∑
k=1

br
k (

4∑
q=1

m`q bq
k −B`

k) = 0

where ` = 1 . . . 3, and r = 1 . . . 4.

Rearranging,

N∑
k=1

4∑
q=1

br
k(m`q bq

k)−
N∑
k=1

br
kB`

k = 0

or

N∑
k=1

4∑
q=1

(br
k bq

k)m`q =
N∑
k=1

br
kB`

k

where ` = 1 . . . 3, and r = 1 . . . 4, and the m’s are
the unknowns.

This boxed equation is the main linear system
equation that can be massaged into matrix form,
to send to cuBLAS, to find the twelve unknown
values of M , m`q.

To see more clearly what is going on, let’s expand
out the three ` cases, ` = 1 . . . 3.

For ` = 1 :

N∑
k=1

4∑
q=1

(br
k bq

k)m1q =
N∑
k=1

br
kB1

k

This is a linear system for the first four values of
matrix M , m1q. Note the B1

k term on the right
hand side.

For ` = 2 :

N∑
k=1

4∑
q=1

(br
k bq

k)m2q =
N∑
k=1

br
kB2

k

This is a linear system for the next four values of
matrix M , m2q.

Note that we have the same linear system
matrix on the left hand side made from the ~bk

vectors, but different values on the right hand
side, for this linear system. It means that with
cuBLAS we can solve all of the systems at once,
like the homework suggests.

For ` = 3 :

N∑
k=1

4∑
q=1

(br
k bq

k)m3q =
N∑
k=1

br
kB3

k

This is a linear system to find the final four values
of matrix M , m3q.

Again, we have the same linear system ma-
trix made from known values of the ~bk vectors on
the left hand side, but different known values on
the right hand side, for this linear system, and
different unknowns to solve for.

The cuBLAS libray will be able to solve all of
these linear systems simultaneously, since we’re
using the same matrix for the linear system, but
different unknowns and different right hand sides.

As the boxed equation suggests, these three
equations can be converted into one giant matrix
system, for use in cuBLAS, using the “Rosetta
stone” approach and the indexing methods that
cuBLAS uses for converting 2D matrices into 1D
vectors, etc.

And don’t forget to fill in the values of 0, 0,
0, and 1, into the final row for matrix M!


