CSEC101b

1/27/05

N people to fund a project

- Examples
 - Set up a web-business
 - Create a shared facility: lab, computer, router,..
- The model
- I = 1, ..., N
- $u^{i}(y) p^{i}$, u concave, $y \ge 0$
- $\sum p^i = C(y)$, C convex

What is Optimal?

- Max $\sum u^i(y)$ p^i Subject to $\sum p^i \ge C(y)$
- Or max $(\sum u^{i}(y)) C(y)$
- FOC: $du^{i}(y^{*})/dy = dC(y^{*})/dy$
- SOC: concavity and convexity
- p^i can be anything such that $\sum p^i \ge C(y)$

Example

- $u^{i}(y) = a^{i} \ln(y)$
- C(y) = Ky
- Optimal?
- $\sum (a^{i}/y) = K$ or
- $y^* = (\sum a^i)/K$

Raise \$

- Each i contributes c^i and then $y = (\sum c^i)/K$
- What is the Nash Equilibrium?
- Best reply?
- Max $u^i(\sum c^i/K)$ c^i implies $[du^i(\sum c^i/K)/dc^i][1/K] = 1$
- Let y^{*i} solve $du^i(y)/dy = K$
- Then the best reply is $c^i = y^{*i} \sum_{-i} c^k$

The Nash Equilibrium

- Suppose $c^1 > c^i$ for all $j \neq 1$.
- The Nash equilibrium is

$$c^j = 0$$
 for all $j \neq 1$

$$c^1 = y^{*1}$$

- This is not optimal.
- Let's try something else.

Pay what it is worth

- Let each j pay a price of q^j per unit of y.
- If we set the q^j such that

 $q^{j} = [du^{j} (y^{*})/dy] = a^{j}/y^{*}$ and $\sum q^{j} = K$

Then <u>if they take prices as given</u> each j will want y to be chosen such that

 $a^j/y = q^j$ or $a^j/y = a^j/y^*$ or $y = y^*$.

And since $\sum q^j = \sum du^j (y^*)/dy = K$, this is optimal.

• The prices q are called <u>Lindahl equilibrium prices</u>.

What process do we use?

- How do we compute the prices?
 - Suppose the fund-raiser knows the form of the utility functions but does not know a.
 - Ask for a^j and then let $q^j = a^j / y^* = Ka^j / (\sum a^k)$
- Note: This is like central planning.
 - If we know a, we can compute y^* and payments $q^j y^*$ for each j.
- Will everyone want to tell us what their a^j is?
 - If they were a computer they would, but.....

Revelation of information?

• Person j knows the process and knows that if they say m and the others say m, then person j will get

 $a^{j} ln(\sum m^{k}/K)$ - $[K m^{j} / (\sum m^{k})] (\sum m^{k}/K)$

- Maximizing this implies that $[a^{j}/(\sum m^{k}/K)](1/K) 1 = 0$
- Or $a^j = (\sum m^k)$ for all j
- This is impossible!

The Nash Equilibrium

- So an interior equilibrium does not exist.
- As before $m^{*k} = 0$ for all k but 1 and $m^{*1} = a^{-1}$
- This is not good.
- Is there anyway we can get every k to tell us their true value of a?

Change the game

- Varian changed the game tree.
- Let's see what happens if we change the payoff functions.
- We do that by changing the payment rules.
- Let each j announce their "parameter" m^j.
- $y^* = \sum m^k/K$
- $T^{i}(m) = m^{i} \sum_{j} a^{j} \ln \left(\sum m^{k} / \sum_{j} m^{k}\right)$
- Note that $T^i = 0$ if $m^i = 0$

What is the Nash Equilibrium?

- Best reply? Maximize $a^{i} \ln (\sum m^{k}/K) - [m^{i} - \sum_{j} m^{j} \ln (\sum m^{k}/\sum_{j} m^{k})]$
- FOC
- $a^i / (\sum m^k) 1 + (\sum_i m^j) / (\sum m^k) = 0$
- Or $a^{i} + (\sum_{i} m^{j}) = (\sum m^{k})$
- Or $a^i = m^i !$
- "Truth is a (weakly) dominant strategy."

Generalization: Vickrey-Groves-Clarke

- Payoffs: $u^i (y; a^i) p^i$
- Ask for m^i (hoping it is = a^i)
- Let $y^*(m)$ maximize $\sum [u^i (y;m^i) (1/N)Ky]$
- Let $T^{i}(m) = (K/N)y(m)$
 - $\sum_{i} [u^k (y(m); m^k) (1/N)Ky(m)]$ + max $\sum_{i} [u^k (y; m^k) - (1/N)Ky]$

Proof of Incentive Compatibility

- j will want y to maximize u^j(y, a^j) - {(K/N)y - Σ_{-i} [u^k (y; m^k)-(1/N)Ky] + max Σ_{-i} [u^k (y; m^k)-(1/N)Ky]}
 Or u^j(y, a^j)+ [Σ_{-i} u^k (y; m^k)] - Ky + F
- The algorithm maximizes ∑u^k (y; m^k)] - Ky
- So $m^j = a^j$

Possible Problems

- Efficiency in resource use. $\sum T^{j}(m) = K \ y(m)?$
- Generally not. $T^{j}(m) > (1/N)Ky(m)$.
- There are other processes that are not "optimal" in the choice of y but which are efficient in resource use and which are Pareto-superior to VGC.
 - Majority Rule is one.

Majority rule

- $u = a \ln(y) p, C(y)$
- Propose a series of y's until we find a y' such that there is no other y that a majority prefer. Each j pays (K/N)y'.
- Let y^j solve max $a^j \ln y (K/N) y$.
- What is the majority rule equilibrium?

Median Voter theorem

- Let y' be the median $\{y^1, \dots, y^N\}$.
- <u>Theorem</u>: If the u are concave, then y' is the majority rule equilibrium. (If N is odd and u are strictly concave, it is unique.)
- <u>Proof:</u>

Incentives

- <u>A direct mechanism</u>: report a and the mechanism picks the median.
- <u>Theorem:</u> Truth is a dominant strategy
- <u>Revelation Principle</u>
- <u>Corollary:</u>It is dominant strategy to vote your true preferences.

Observation

• There are parameters a for which $\sum [u^{i}(y')-p'^{I}] > [\sum u^{i}(y^{*})-p^{*i}]$

Even though Max $\sum u^i (y')$ - $C(y') < \sum u^i (y^*)$ - $C(y^*)$

Because $\sum p'^i = C(y) < \sum p^{*i}$