CSEC101b

1/27/05

N people to fund a project

- Examples
- Set up a web-business
- Create a shared facility: lab, computer, router,..
- The model
- $\mathrm{I}=1, \ldots, \mathrm{~N}$
- $u^{i}(y)-p^{i}, u$ concave, $y \geq 0$
- $\sum p^{i}=C(y), \quad C$ convex

What is Optimal?

- $\operatorname{Max} \sum \mathrm{u}^{\mathrm{i}}(\mathrm{y})-\mathrm{p}^{\mathrm{i}}$

$$
\text { Subject to } \quad \sum \mathrm{p}^{\mathrm{i}} \geq \mathrm{C}(\mathrm{y})
$$

- Or max ($\left.\sum \mathrm{u}^{\mathrm{i}}(\mathrm{y})\right)$ - $\mathrm{C}(\mathrm{y})$
- FOC: $\mathrm{du}^{\mathrm{i}}\left(\mathrm{y}^{*}\right) / \mathrm{dy}=\mathrm{dC}\left(\mathrm{y}^{*}\right) / \mathrm{dy}$
- SOC: concavity and convexity
- p^{i} can be anything such that $\sum \mathrm{p}^{\mathrm{i}} \geq \mathrm{C}(\mathrm{y})$

Example

- $u^{i}(y)=a^{i} \ln (y)$
- $C(y)=K y$
- Optimal?
- $\sum\left(a^{i} / y\right)=K$ or
- $\mathrm{y}^{*}=\left(\sum \mathrm{a}^{\mathrm{i}}\right) / \mathrm{K}$

Raise \$

- Each i contributes c^{i} and then $y=\left(\Sigma c^{i}\right) / K$
- What is the Nash Equilibrium?
- Best reply?
- Max $u^{i}\left(\sum c^{i} / K\right)-c^{i}$ implies

$$
\left[\mathrm{d} \mathrm{u}^{\mathrm{i}}\left(\sum \mathrm{c}^{\mathrm{i}} / \mathrm{K}\right) / \mathrm{dc} \mathrm{c}^{\mathrm{i}}\right][1 / \mathrm{K}]=1
$$

- Let $y^{* i}$ solve du ${ }^{i}(y) / d y=K$
- Then the best reply is $\mathrm{c}^{\mathrm{i}}=\mathrm{y}^{* \mathrm{i}}-\sum_{-\mathrm{i}} \mathrm{c}^{\mathrm{k}}$

The Nash Equilibrium

- Suppose $c^{1}>c^{i}$ for all $\mathrm{j} \neq 1$.
- The Nash equilibrium is
$c^{j}=0$ for all $\mathrm{j} \neq 1$ $c^{1}=y^{* 1}$
- This is not optimal.
- Let's try something else.

Pay what it is worth

- Let each j pay a price of q^{j} per unit of y.
- If we set the q^{j} such that

$$
\begin{aligned}
& \mathrm{q}^{\mathrm{j}}=\left[\mathrm{du}^{\mathrm{j}}\left(\mathrm{y}^{*}\right) / \mathrm{dy}\right]=\mathrm{a}^{\mathrm{j}} / \mathrm{y}^{*} \\
& \text { and } \Sigma \mathrm{q}^{\mathrm{j}}=\mathrm{K}
\end{aligned}
$$

Then if they take prices as given each j will want y to be chosen such that

$$
a^{j} / y=q^{j} \text { or } a^{j} / y=a^{j} / y^{*} \text { or } y=y^{*} .
$$

And since $\sum q^{j}=\sum d u^{j}\left(y^{*}\right) / d y=K$, this is optimal.

- The prices q are called Lindahl equilibrium prices.

What process do we use?

- How do we compute the prices?
- Suppose the fund-raiser knows the form of the utility functions but does not know a.
- Ask for a^{j} and then let $q^{j}=a^{j} / y^{*}=K a^{j} /\left(\sum a^{k}\right)$
- Note: This is like central planning.
- If we know a, we can compute y^{*} and payments $q^{j} y^{*}$ for each j .
- Will everyone want to tell us what their a^{j} is?
- If they were a computer they would, but......

Revelation of information?

- Person j knows the process and knows that if they say m and the others say m, then person j will get

$$
\mathrm{a}^{\mathrm{j}} \ln \left(\sum \mathrm{~m}^{\mathrm{k}} / \mathrm{K}\right)-\left[\mathrm{K} \mathrm{~m}^{\mathrm{j}} /\left(\sum \mathrm{m}^{\mathrm{k}}\right)\right]\left(\sum \mathrm{m}^{\mathrm{k}} / \mathrm{K}\right)
$$

- Maximizing this implies that $\left[\mathrm{a}^{\mathrm{j}} /\left(\sum \mathrm{m}^{\mathrm{k}} / \mathrm{K}\right)\right](1 / \mathrm{K})-1=0$
- Or $\mathrm{a}^{\mathrm{j}}=\left(\sum \mathrm{m}^{\mathrm{k}}\right)$ for all j
- This is impossible!

The Nash Equilibrium

- So an interior equilibrium does not exist.
- As before $\mathrm{m}^{* \mathrm{k}}=0$ for all k but 1 and

$$
\mathrm{m}^{* 1}=\mathrm{a}^{1}
$$

- This is not good.
- Is there anyway we can get every k to tell us their true value of a?

Change the game

- Varian changed the game tree.
- Let's see what happens if we change the payoff functions.
- We do that by changing the payment rules.
- Let each j announce their "parameter" m".
- $\mathrm{y}^{*}=\sum \mathrm{m}^{\mathrm{k}} / \mathrm{K}$
- $\mathrm{T}^{\mathrm{i}}(\mathrm{m})=\mathrm{m}^{\mathrm{i}}-\sum_{-\mathrm{j}} \mathrm{a}^{\mathrm{j}} \ln \left(\sum \mathrm{m}^{\mathrm{k}} / \sum_{-\mathrm{j}} \mathrm{m}^{\mathrm{k}}\right)$
- Note that $\mathrm{T}^{\mathrm{i}}=0$ if $\mathrm{m}^{\mathrm{i}}=0$

What is the Nash Equilibrium?

- Best reply? Maximize $\mathrm{a}^{\mathrm{i}} \ln \left(\sum \mathrm{m}^{\mathrm{k}} / \mathrm{K}\right)-\left[\mathrm{m}^{\mathrm{i}}-\sum_{-\mathrm{j}} \mathrm{m}^{\mathrm{j}} \ln \left(\sum \mathrm{m}^{\mathrm{k}} / \sum_{-\mathrm{j}} \mathrm{m}^{\mathrm{k}}\right)\right]$
- FOC
- $\mathrm{a}^{\mathrm{i}} /\left(\sum \mathrm{m}^{\mathrm{k}}\right)-1+\left(\sum_{-\mathrm{i}} \mathrm{m}^{\mathrm{j}}\right) /\left(\sum \mathrm{m}^{\mathrm{k}}\right)=0$
- $\operatorname{Or} \mathrm{a}^{\mathrm{i}}+\left(\sum_{-\mathrm{i}} \mathrm{m}^{\mathrm{j}}\right)=\left(\sum \mathrm{m}^{\mathrm{k}}\right)$
- Or $\mathrm{a}^{\mathrm{i}}=\mathrm{m}^{\mathrm{i}}$!
- "Truth is a (weakly) dominant strategy."

Generalization:

Vickrey-Groves-Clarke

- Payoffs: $u^{i}\left(y ; a^{i}\right)-p^{i}$
- Ask for m^{i} (hoping it is $=\mathrm{a}^{\mathrm{i}}$)
- Let $y^{*}(\mathrm{~m})$ maximize $\Sigma\left[\mathrm{u}^{\mathrm{i}}\left(\mathrm{y} ; \mathrm{m}^{\mathrm{i}}\right)-(1 / \mathrm{N}) \mathrm{Ky}\right]$
- Let $\mathrm{T}^{\mathrm{i}}(\mathrm{m})=(\mathrm{K} / \mathrm{N}) \mathrm{y}(\mathrm{m})$
$-\sum_{-\mathrm{i}}\left[\mathrm{u}^{\mathrm{k}}\left(\mathrm{y}(\mathrm{m}) ; \mathrm{m}^{\mathrm{k}}\right)-(1 / \mathrm{N}) \mathrm{Ky}(\mathrm{m})\right]$
$+\max \sum_{-\mathrm{i}}\left[\mathrm{u}^{\mathrm{k}}\left(\mathrm{y} ; \mathrm{m}^{\mathrm{k}}\right)-(1 / \mathrm{N}) \mathrm{Ky}\right]$

Proof of Incentive Compatibility

- j will want y to maximize $u^{j}\left(y, a^{j}\right)-\{(K / N) y$
$-\sum_{-i}\left[u^{k}\left(y ; m^{k}\right)-(1 / N) K y\right]$
$\left.+\max \sum_{-\mathrm{i}}\left[\mathrm{u}^{\mathrm{k}}\left(\mathrm{y} ; \mathrm{m}^{\mathrm{k}}\right)-(1 / \mathrm{N}) \mathrm{Ky}\right]\right\}$
Or $u^{\mathrm{j}}\left(\mathrm{y}, \mathrm{a}^{\mathrm{j}}\right)+\left[\sum_{-\mathrm{i}} \mathrm{u}^{\mathrm{k}}\left(\mathrm{y} ; \mathrm{m}^{\mathrm{k}}\right)\right]-\mathrm{Ky}+\mathrm{F}$
- The algorithm maximizes

$$
\left.\sum \mathrm{u}^{\mathrm{k}}\left(\mathrm{y} ; \mathrm{m}^{\mathrm{k}}\right)\right]-\mathrm{Ky}
$$

- $S o m^{j}=a^{j}$

Possible Problems

- Efficiency in resource use.

$$
\Sigma \mathrm{T}^{\mathrm{j}}(\mathrm{~m})=\mathrm{K} \mathrm{y}(\mathrm{~m}) ?
$$

- Generally not. $\mathrm{T}^{\mathrm{j}}(\mathrm{m})>(1 / \mathrm{N}) \mathrm{Ky}(\mathrm{m})$.
- There are other processes that are not "optimal" in the choice of y but which are efficient in resource use and which are Pareto-superior to VGC.
- Majority Rule is one.

Majority rule

- $\mathrm{u}=\mathrm{a} \ln (\mathrm{y})-\mathrm{p}, \mathrm{C}(\mathrm{y})$
- Propose a series of y's until we find a y' such that there is no other y that a majority prefer. Each j pays (K/N)y'.
- Let y^{j} solve max $a^{j} \ln y-(K / N) y$.
- What is the majority rule equilibrium?

Median Voter theorem

- Let y^{\prime} be the median $\left\{y^{1}, \ldots, y^{N}\right\}$.
- Theorem: If the u are concave, then y^{\prime} is the majority rule equilibrium. (If N is odd and u are strictly concave, it is unique.)
- Proof:

Incentives

- A direct mechanism: report a and the mechanism picks the median.
- Theorem: Truth is a dominant strategy
- Revelation Principle
- Corollary:It is dominant strategy to vote your true preferences.

Observation

- There are parameters a for which

$$
\sum\left[\mathrm{u}^{\mathrm{i}}\left(\mathrm{y}^{\prime}\right)-\mathrm{p}^{\prime \mathrm{I}}\right]>\left[\sum \mathrm{u}^{\mathrm{i}}\left(\mathrm{y}^{*}\right)-\mathrm{p}^{* i}\right]
$$

Even though
$\operatorname{Max} \sum \mathrm{u}^{\mathrm{i}}\left(\mathrm{y}^{\prime}\right)-\mathrm{C}\left(\mathrm{y}^{\prime}\right)<\sum \mathrm{u}^{\mathrm{i}}\left(\mathrm{y}^{*}\right)-\mathrm{C}\left(\mathrm{y}^{*}\right)$

Because $\sum \mathrm{p}^{\prime \mathrm{i}}=\mathrm{C}(\mathrm{y})<\sum \mathrm{p}^{* \mathrm{i}}$

