CS/Ec 101 b

1/25/05

Strategic Form Game

- Players: $\mathrm{i}=1, \ldots, \mathrm{~N}$
- Strategies: $s^{i} \in S^{i}$ for each i
- Payoffs: $u^{\mathrm{i}}\left(\mathrm{s}^{1}, \ldots, s^{\mathrm{N}}\right)$ for each i
- Nash Equilibrium:

$$
\begin{aligned}
& \mathrm{s}^{*} \in \mathrm{~S}^{1} \mathrm{x} \ldots \mathrm{x} \mathrm{~S}^{\mathrm{N}} \\
& \mathrm{u}^{\mathrm{i}}\left(\mathrm{~s}^{*}\right) \geq \mathrm{u}^{(}\left(\mathrm{s}^{*} / \mathrm{s}^{\mathrm{i}}\right) \text { for each i. } \\
& \left(\mathrm{s}^{*} / \mathrm{s}^{\mathrm{i}}\right)=\left(\mathrm{s}^{* 1}, \ldots, \mathrm{~s}^{\mathrm{i}}, \ldots, \mathrm{~s}^{* N}\right)
\end{aligned}
$$

Next

- An example using Nash Equilibrium
- Existence of Nash Equilibrium
- Why play Nash Equilibrium?
- What is rational?

Example: Voluntary Contribution Games

- 2 roommates want to buy a home entertainment set. Let y be the size (quality) of the set. A set of size y costs Ky to buy.
- If A pays a and B pays b, then they can get a set of size $(a+b) / K$.
- A's concave utility from a set of size y is $A(y)-a$.
- B's concave utility from a set of size y is $B(y)-b$.
- How big a set do they get? Who pays?

VC Game

- If B pays b^{*}, then A wants to choose $a \geq 0$ to $\operatorname{Max} A\left(a+b^{*}\right)-a$
Or $A^{\prime}\left(a+b^{*}\right) \leq 1$, where $a>0=>=0$.
- Suppose $\mathrm{a}^{*}>0$
then $y^{*}=a^{*}+b^{*}$ and $A^{\prime}\left(y^{*}\right)=1$.
So A's best reply function is $a=y^{*}-b$ if $y^{*}-b \geq 0$
Otherwise a $=0$.
- Similarly for B, but here $B^{\prime}\left(y^{* *}\right)=1$ and

$$
b=y^{* *}-a \text { if } y^{* *}-a \geq 0
$$

VC Equilibrium

Is this a "good" outcome?

- A good outcome is one such that no one can be made better off without making someone worse off. (Pareto-optimal).
- In our example, a good outcome maximizes

$$
A(a+b)+B(a+b)-a-b \text { with } a, b \geq 0
$$

- So $A^{\prime}\left(y^{\prime}\right)+B^{\prime}\left(y^{\prime}\right)-1=0$.

This means the Nash Equilibrium outcome is NOT a good outcome if B' $(y)>0$, since $y^{\prime}>y^{*}$.

What if one moves first?

- Suppose A moves first.
- Then when B moves, she chooses according to her best replay function.
- She chooses $b=y^{* *}$ - a if ≥ 0.
- A gets $\mathrm{A}\left(\mathrm{y}^{* *}\right)$ - a for all $\mathrm{a} \leq \mathrm{y}^{* *}$ and $A(a)$ - a for all $a>y^{* *}$
- So A chooses $=0$ if $A\left(y^{* *}\right)>A\left(y^{*}\right)-y^{*}$ and A chooses y* otherwise.
- Again we do not get the good outcome.

Let's change the game. Let B subsidize A.

- Suppose B commits to paying A, s for each $\$$ contributed by A and $\mathrm{b}=0$.
- Then A gets A(a) - a + sa and

> B gets B(a) - sa.

- Now $A^{\prime}\left(y^{\prime \prime}\right)=1-s$ and $y^{\prime \prime}>y^{*}$.

$$
\mathrm{B}\left(\mathrm{y}^{\prime \prime}\right)-\mathrm{sy} \mathrm{\prime}-\mathrm{B}\left(\mathrm{y}^{*}\right)>0 \text { for s near } 0 .
$$

- So this is good for B.

The subsidy game (Varian)

- We consider a 2 stage game
- Stage 1: Simultaneous move to choose s and t, where t is the rate at which A subsidizes B.
- Stage 2: Simultaneous move to choose contributions a and b .
- What is the sub-game perfect equilibrium?
- If both contribute in equilibrium at stage 2 then

$$
A^{\prime}(a+b)-(1-t)=0 \text { and } B^{\prime}(a+b)-(1-s)=0
$$

- If A does not contribute then B could increase t at no cost until A is just on the verge.

The subsidy game

- So we assume in equilibrium
$A^{\prime}(a+b)-(1-t)=0$ and $B^{\prime}(a+b)-(1-s)=0$.
- At this point if A were to increase s, then B would contribute everything, $\mathrm{b}^{\prime}=\mathrm{a}+\mathrm{b}$ and $\mathrm{a}=0$.
- In equilibrium that cannot help A so

$$
A(a+b)-(1-t) a-s b \geq A(a+b)-s(a+b)
$$

- Similarly a decrease in s can't help A so

$$
A(a+b)-(1-t) a-s b \geq A(a+b)-(1-t)(a+b)
$$

- Together $b(1-t-s)=0$. Similarly $a(1-t-s)=0$.
- So $1-\mathrm{t}-\mathrm{s}=0$.

The subsidy game

- In equilibrium,

$$
\begin{aligned}
& A^{\prime}(a+b)=1-t \\
& B^{\prime}(a+b)=1-s \\
& 1-s-t=0
\end{aligned}
$$

- So $A^{\prime}(a+b)+B^{\prime}(a+b)=1$ and the equilibrium picks a good allocation.
[Note: for those in the know, 1-t and 1-s are the Lindahl equilibrium prices for this situation.]

More later

- Mechanism design
- Optimal auctions

When does a Nash Equilibrium Exist?

- The simple answer is "when the reaction functions cross at least once".
- A mathematical answer relies on a fixed point theorem.
- The vector x is a fixed point of the function f if $\mathrm{x}=\mathrm{f}(\mathrm{x})$.
- Suppose $\mathrm{f}:[0,1]->[0,1]$ and suppose that $f(0)=a$ and $f(1)=b$. If f is continuous then the curve from a to b must cross the 45 degree line at least once.

Fixed point theorem

Correspondence: set-valued function $\mathrm{F}(\mathrm{x})$.
Upper semi (hemi) continuous:

- Theorem: (Kakutani)

X compact, convex.
$\mathrm{F}: \mathrm{X}=>\mathrm{X}$ is a correspondence
F: upper semi-continuous, convex valued
Implies
$\exists x^{*}$ such that $x^{*} \in \mathrm{~F}\left(\mathrm{x}^{*}\right)$.

When does a Nash Equilibrium Exist?

- Given the game $\left\{\mathrm{I}, \mathrm{S}^{1}, \ldots, \mathrm{~S}^{\mathrm{N}}, \mathrm{u}^{1}, \ldots, \mathrm{u}^{\mathrm{N}}\right\}$ such that
S^{i} is compact and convex for all i .
U^{i} is continuous in s for all i.
U^{i} is concave is s^{i} for all s^{-i}, for all i.
- Let $\mathrm{r}^{\mathrm{i}}(\mathrm{t})=\left\{\mathrm{s}^{\mathrm{i}} \in \operatorname{argmax} \mathrm{u}\left(\mathrm{t} / \mathrm{s}^{\mathrm{i}}\right)\right\}$
- $\left(r^{1}(\mathrm{t}), \ldots, \mathrm{r}^{\mathrm{N}}(\mathrm{t})\right)$ is usc, convex valued.
- There is t^{*} where $\mathrm{t}^{*} \in \mathrm{r}\left(\mathrm{t}^{*}\right)$.
- And t^{*} is a Nash equilibrium.

Why Play Nash? What is Rational?

- We say that player j is rational if they choose a strategy to maximize their payoff given some belief about the other.

Example: rationality

	Cooperate	Defect
Cooperate	2,2	0,3
Defect	3,0	1,1

If 2 plays C, then D is best for 1 . Similarly if 2 plays D , then D is best for 1 .
D is the only rational thing for each. (D, D) is the NE

But

	Cooperate	Defect
Cooperate	3,2	0,3
Defect	2,0	1,1

If 2 plays C, then C is best for 1 .
If 2 plays D , then D is best for 1 .
What are sensible beliefs for 1 to have?
If 1 believes 2 is rational then 2 will only pick D. So 1 should only believe D , and therefore use D . Note that (D, D) is the NE.

Once more.....

	L	R
A	4,2	0,3
B	1,1	1,0
C	3,0	2,2

A is rational and C is rational. Why?
L and R are rational. Why?
If 1 assumes 2 is rational then A and C are still ok.
But if 1 assumes 2 assumes 1 is rational then 2 knows 1 will not pick B. So 2 will pick R. So 1 picks C.
(C, R) is the NE

Rationalizable Strategies

- A belief is a probability density $\mathrm{p}^{\mathrm{i}}\left(\mathrm{s}^{-\mathrm{i}}\right)$ on $\mathrm{S}^{-\mathrm{i}}$
- We say s^{i} is rational if there is a p^{i} such that s^{i} maximizes $\sum_{\mathrm{s}-\mathrm{i}} \mathrm{u}^{\mathrm{i}}\left(\mathrm{s}^{\mathrm{i}}, \mathrm{s}^{-\mathrm{i}}\right) \mathrm{p}^{\mathrm{i}}\left(\mathrm{s}^{-\mathrm{i}}\right)$
- We say $s^{* i}$ is rationalizable if for all players j there is a set Z^{j} such that $s^{* i} \in Z^{i}$ and for all players $s^{* j}$ and all $s^{j} \in Z^{j}, s^{j}$ is a best response to a belief of j such that $\mathrm{p}^{\mathrm{j}}\left(\mathrm{S}^{-\mathrm{j}}\right)=1$.

Why Play Nash?

- Theorem: Every action used with some probability in some mixed strategy Nash Equilibrium is rationalizable.
- Warning: Other strategies may also be rationalizable.

Why Play Nash? Domination

- Given the game $\left\{I, S^{1}, \ldots, S^{N}, u^{1}, \ldots, u^{N}\right\}$
- A strategy $t \in S^{i}$ dominates $s \in S^{i}$ if $\mathrm{u}^{\mathrm{i}}(\mathrm{x} / \mathrm{t})>\mathrm{u}^{\mathrm{i}}(\mathrm{x} / \mathrm{s})$ for all x of the others.
- A rational player will never play a dominated strategy. So we can delete dominated strategies.

Deletion of dominated strategies

We are left with the NE.

Looks like the end. But a mixed strategy of $(1 / 2,0,1 / 2)$ dominates strategy 2 . Even if 2 is not dominated by a pure Strategy. So delete 2 .

Deletion of dominated strategies

Left with the unique Nash Equilibrium.

Iterated Elimination of Dominated Strategies

- Theorem: There is a unique set, R , of strategy profiles, s , that survives the iterated elimination of dominated strategies.
- Theorem: If the pure strategies of S are finite then the set R is the set of rationalizable strategies.

What about weakly dominated strategies?

	l	r
u	0,0	0,1
d	1,0	0,0

NE are (u,r), (d,r), (d,l)
Sequence of deletions matters: try u then 1 or r and then try 1 and then u or d. NE always left but may lose some!

