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Game Theory Module



Possible References, Texts

• Fun and Games: A Text on Game Theory
– Ken Binmore, Heath 1992

• Game Theory: Analysis of Conflict
– Roger Myerson, Harvard Press 1991

• Thinking Strategically
– Avinash Dixit and Barry Nalebuff, Norton 1991

• Games and Decisions
– Duncan Luce and Howard Raiffa, Wiley 1957

• Evolution and the Theory of Games
– John Maynard Smith, Cambridge U Press, 1982



Intro

• Game theory is about strategic interactions
• Should a committee member ever vote for

their least favorable candidate?
• Might it be best to flip a coin to decide

whether to attack today or tomorrow?
• Should someone contracting to build a new

facility consider holding an auction and
paying the second lowest price?



Strategic Voting

• 3 roommates Kevin, Lois, and Minh use
majority rule voting to decide whether to
add another roommate or not.

• Alice is the first proposed. But then
someone mentions Bob.

• They vote first on whether to replace Alice
with Bob (the amendment) and then
whether to add the winner of that or not.
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Kevin Lois Minh
Alice No oneBob
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Who should win?

Straight-forward
Backward-induction

Alice
 1 - No one
2 - Alice or ??

What is the
process?



The Rules of the Game

• Who can do What and When?
• Who gets How much when the game is

over?
• When - Extensive Form

– A game tree: a connected graph (nodes and
links) with no cycles



• Strategy: an action by a player at each node to
which they are assigned.
– Player 1:  at 1 and 5,  (l,l ),(l, r),….
– Player 2:  at 2,3 and 4,   (x, y, z) …
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Playing to Win:
Backward Induction

The “equilibrium” strategies are (r, r) and (R, x, x).



Strategic Form
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(Weak) Best Reply Strategy:  s’ is a Best Reply to t 
if ∏(s’, t) ≥∏(s, t) for all s.

(Weakly) Dominant Strategy : ∏(s’, t) ≥∏(s, t) for all s and t.
Note that rr is a (weakly) Dominant Strategy for I

                and RLL is a (weakly) Dominant Strategy for II.



Behavioral Example:
Should you follow the advice of a

game theorist? (Aumann)
I    II  I  II I  II I  II  

Player 1 10 0 40 0 160 0 640 0

Player 2   0 20 0 80 0 320 0 1280

The Theorist’s Advice: What does backward induction imply?
What would you do, if you were II,  at your first chance? If you were I?

1280
  0

take take

In the lab most people pass the first time. (McKelvey and Palfrey)



Simultaneous Move Games

• Let’s consider a Dilemma
• Do you drive(D) to school or do you ride a

bike(C)?
– Driving creates pollution which no one likes

•  P(0) = 0, P(1) = 5/person, P(2) = 8/person
– Driving yields higher benefits (pollution aside)

• U(D) = d,  U(B) = b,  d > b + 5



The Extensive Form
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The strategy for II has to be the same at node 2 and 3.

 1:I



The Normal Form

d-8, d-8 d-5, b-5 d

 b-5, d-5   b, b b

        d       b

Now d is a best replay to b and d is a best replay to d.

So d is a dominant strategy for both!

Why is this a Dilemma? If 5 < d-b < 8, then both would be
better off at b.    There is a Pareto-Superior action plan.



Not every game has a Dominant
Strategy Equilibrium

  11, 15  3, 7   D

 4, 20 10, 2   U

    R   L

For row player: U is b.r. to L, D is b.r. to R.  Which to play?
Look at column player: R is b.r. to U and R is b.r. to D
Note that D and R are b.r. to each other.

(Stable?) (Publish proof?)
Nash Equilibrium: A vector of strategies such that each is a
best replay to the others. (D, R) is the Nash Equilibrium. DS⊆NE



Nash is Not Enough

• Consider the Boeing/Airbus game.
– They can each choose design a or b.
– B prefers a, A prefers b.

 50, 100 25, 25 b
40, 40100, 50 a
 b aB     A

There are two Nash Equilibrium: (a,a) and (b,b)



The Extensive Form
B

a b

a
aa b

A A

100 40         25      50
 50 40        25                 100

Backward induction implies  (a,a).
First Mover advantage in a coordination  game
Note: A could try to threaten that they will use
b “no matter what” but it is not credible.

(Selten)  Subgame Perfect Nash Equilibrium is a Nash
Equilibrium in all subgames. SPE ⊂  NE
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10, 0 30, 0

(r, d) and (l, u) are subgame perfect equilibria.

Can B count on A to pick d in that sub-game? If not then what?
A can gain by seeming to be “irrational”.



There may be NO
(pure strategy) Nash Equilibria

• The soccer penalty kick (or tennis serve)
– Strategies

• Kicker: Left or Right
• Goalie: Left or Right

– Payoffs
• If both go same way, no goal is scored  (-1, 1).
• If they go different ways, a goal is scored (1, -1).



Normal (strategic) Form

-1, 11, -1Right

1, -1-1, 1Left

RightLeftK         G

KL is best against GR which is best against KR
 which is best against GL which is best against KL.
There is no Nash Equilibrium here.

This is a Zero-Sum game. 



The Extensive Form
Kicker

l r

l
lr r

  -1     1           1        -1
   1    -1           -1                   1

There are 2 SPE: (l, l) and (r, r)

goalie goalie

How do I protect against the other player figuring out 
what I am going to do?

In strategic form there is a second mover advantage.



Mixed Strategies

• To protect against the second mover, I can use a
Mixed Strategy: I randomize.

• Suppose the kicker plays L with probability k?
• If the goalie plays L they get in expected value

k (1) + (1-k) (-1) = 2k - 1.
• If the goalie plays R they get 1-2k.
• The goalie will play L if and only if 2k-1 > 1-2k

or k > 1/2.



Mixed Strategies

• The goalie will play L if and only if 2k-1 > 1-2k
or k > 1/2.

• So the kicker gets 1-2k if k > 1/2 and gets 2k-1 if
k < 1/2.

• The best k the kicker can choose is 1/2.
• This makes the goalie indifferent between his

possible responses.
• A mixed strategy is a probability density over your

space of possible pure strategies.



Finding Equilibrium
in Strategic Form

• If the kicker uses a mixed strategy k and the
goalie uses a mixed strategy g then
– The goalie gets
g[k (1) + (1-k) (-1) ] + (1-g)[k (-1) + (1-k) (1)]
= g (2k - 1) + (1-g)(1-2k) = 4gk - 2g - 2k + 1.
– The kicker gets 1 - 2k - 2g - 4gk.

• What are the equilibrium values of k and g?
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U(k,g: goalie) = 4gk - 2g - 2k + 1
Given g, let’s plot the best response k.

Now do g given k, where U(k,g: kicker) = -4gk+2g+2k-1

Best
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function of
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Best
response
function
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kicker
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The Nash Equilibrium is [(1/2), (1/2)], [(1/2), (1/2)].
Best
response
function
of the
kicker Best

response
function of
the goalie



Next

• Theorem: existence of equilibrium
• Rationalizability
• Iterated dominance


