

Nuggets: Remember them!

- Maximize concave function over a a convex set: then
- Maximize convex function over a convex set which is also closed and bounded: then.....
- Relationship between geometry and algebra: extreme point is what in terms of algebra?
- Simplex algorithm in terms of geometry, algebra and economics.

Nuggets: Remember them!

- Maximize concave function over a a convex set: then local maximum is a global maximum
- Maximize convex function over a convex set which is also closed and bounded: then.....

there exists an extreme point which is a global maximum

Relationship between geometry and algebra: extreme point is what in terms of algebra?

Basic feasible solution

 Simplex algorithm in terms of geometry, algebra and economics.

Simplex algorithm

Geometry:

current_solution is an extreme point;

while (current_solution is not a local maximum) {
find an edge to a higher-valued extreme point;
current solution = higher-valued extreme point;

}

Simplex Algorithm

Algebra:

current_solution is basic feasible solution;

- while (current_solution is not a local maximum) {
 - find a non-basic variable x_k to increase in value and that increases the objective;
 - determine which basic variable x_j reduces to zero first as the non-basic variable is increased;
 - *current solution* = new basic feasible solution with x_k replaced in the basis by x_j ;

}

Examples of Simplex Algorithm

Maximize z

- Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:
 - $2x_0 + x_1 + 3x_2 + s_0 + 0s_1 = 6$ $x_0 + 2x_1 + 4x_2 + 0s_0 + s_1 = 9$

$$x_0, x_1, x_2, s_0, s_1 >= 0$$

A basic feasible solution (and hence an extreme point) is s = b, x = 0

Is this a local maximum?

Examples of Simplex Algorithm

Maximize z

- Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:

$$x_0, x_1, x_2, s_0, s_1 >= 0$$

A basic feasible solution (and hence an extreme point) is s = b, x = 0

Is this a local maximum?

No, because increasing x₀ by delta (sufficiently small) increases z by 4*delta.

Let us increase x_0 . Suppose we keep all other non-basic variables (i.e., x_1 and x_2) at value 0; how large can x_0 become while satisfying constraints?

7

Example of Simplex Algorithm

Maximize z

- Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:

$$x_0, x_1, x_2, s_0, s_1 >= 0$$

Old basic variables: s_0 , s_1 .

New basic variables: x_0 , s_1 .

Convert to canonical form for new basic variables.

Convert to canonical form by pivoting on the element in the column of the incoming basic variable (column 1) and in the row of the outgoing basic variable (row 1).

Examples of Simplex Algorithm

Maximize z	
	What
Where $0x_0 + 3x_1 + 3x_2 - 2s_0 + 0s_1 = z - 12$	d
Subject to:	
$1.x_0 + 0.5x_1 + 1.5x_2 + 0.5s_0 + 0s_1 = 3$ $0.x_0 + 1.5x_1 + 2.5x_2 - 0.5s_0 + s_1 = 6$	i
$70.x_0 + 1.5x_1 + 2.5x_2 - 0.5s_0 + s_1 = 6$	
$ig x_0 , x_1 , x_2 , s_0 , s_1 \! > = 0$	
\mathbf{W} when \mathbf{x} is increased to \mathbf{A} s, dro	ons to (

Vhat basic variable drops to 0 first when x_1 is increased?

pivot

When x_1 is increased to 4, s_1 drops to 0 while x_0 remains positive. So, the new basic variables are x_0 and x_1 .

Examples of Simplex Algorithm

Maximize z

Where $0x_0 + 0x_1 - 2x_2 - 5s_0 - 2s_1 = z - 24$ Subject to:

 $x_0, x_1, x_2, s_0, s_1 >= 0$

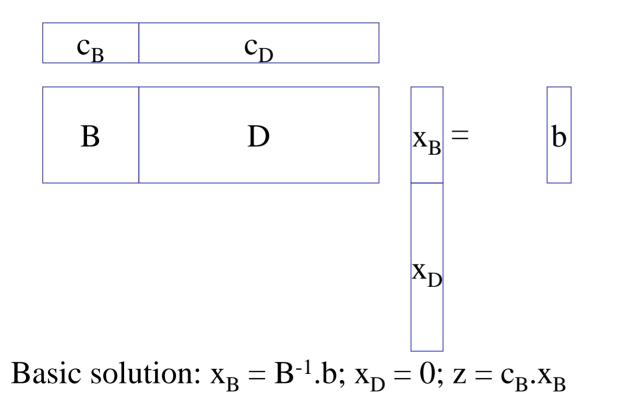
$$1.x_0 + 0x_1 + 2/3x_2 + 1/3s_0 - 1/3s_1 = 1$$

$$0.x_0 + 1x_1 + 5/3x_2 - 1/3s_0 + 2/3s_1 = 4$$

Problem is once again in canonical form.

The basic feasible solution for this canonical form is $x_0 = 1$, $x_1 = 4$, with all other variables x_2 , s_0 , s_1 being 0.

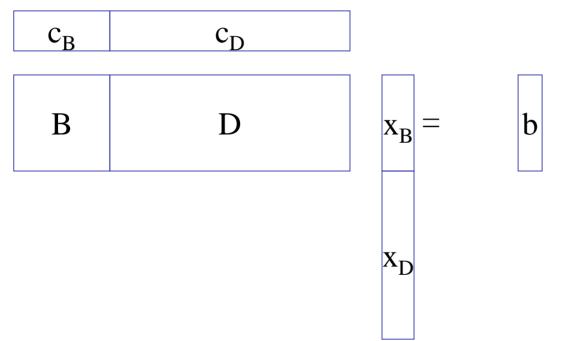
Since all coefficients of c are now negative, **the solution is a local (and hence global) maximum.**



CS 101, Ec 101

Mathematical Programming 5 17 January 2005

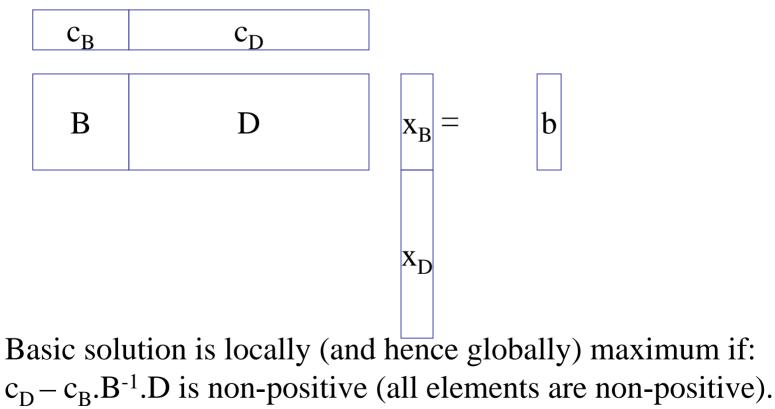
Basic solution: $x_B = B^{-1}.b$; $x_D = 0$; $z = c_B.x_B$



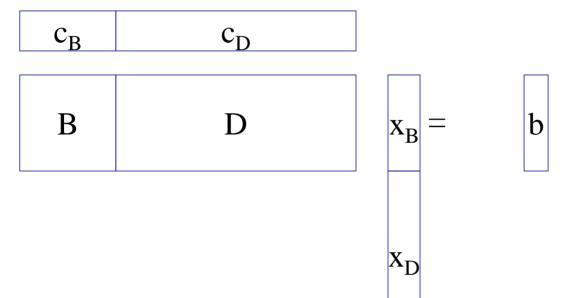
Basic solution is feasible if and only if: x_B is non-negative (all elements of x_B are non-negative).

CS 101, Ec 101

Basic solution: $x_B = B^{-1}.b$; $x_D = 0$; $z = c_B.x_B$

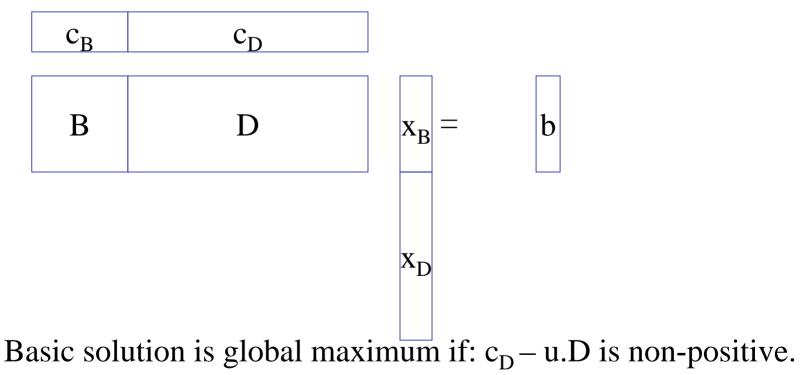


Basic solution: $x_B = B^{-1}.b$; $x_D = 0$; $z = c_B.x_B$



Let $u = c_B B^{-1}$. We will see the relationship between u and prices, and between u and dual variables. Describe local max in terms of u.

Basic solution: $x_B = B^{-1}.b$; $x_D = 0$; $z = c_B.x_B$



Basic Variables

Maximize z Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to: $2x_0 + x_1 + 3x_2 + s_0 + 0s_1 = 6$ $x_0 + 2x_1 + 4x_2 + 0s_0 + s_1 = 9$ $x_0, x_1, x_2, s_0, s_1 \ge 0$

Suppose basic variables are x_0 and s_1 .

What is x_B ? x_D ? B? D? c_B ? c_D ? u?

Basic Variables

Maximize z	Suppose basic variables are x_0 and s_1 .
Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$	
Subject to:	What is $c_D - u.D$?
$2x_0 + x_1 + 3x_2 + s_0 + 0s_1 = 6$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Is this basic feasible solution a
	maximum?
$x_0, x_1, x_2, s_0, s_1 >= 0$	

Economic Argument for Simplex

- Each constraint specifies the amount of a resource that is available.
- For example, first constraint is amount of machine 1 available to a company and the second constraint is the amount of machine 2 available.
- The variables correspond to different activities: x₀ is the number of chairs made, x₁ the number of tables, x₂ the number of beds, s₀ is discarding machine 1 units,
- Making one unit of chairs requires 2 units of machine 1 and 1 unit of machine 2: the column of A corresponding to x₀. One unit of chairs yields a revenue of 4 units.

Economic Argument for Simplex

- $u = c_B B_{-1}$
- z = u.b
- So, if b₁ is increased by delta, then z increases by u₁.delta.
- So u₁ is the imputed price for the first resource; it is the maximum amount that the company will pay for an increment of that resource (assuming the company's activities are specified by the basic variables x_B.)

Maximize z	Suppose basic variables are x_0 and s_1 .
Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$	
Subject to:	$u = [2 \ 0].$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	If the first resource is increased from 6 to 6.001 how much is z increased by (while the only activities
$x_0, x_1, x_2, s_0, s_1 >= 0$	carried out correspond to x_0 and
	$ \frac{s_1}{16} $
	If the second resource is increased
	from 9 to 9.001 what happens?

Maximize z

Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:

$$x_0, x_1, x_2, s_0, s_1 >= 0$$

When u = [2 0] does executing activity 2 produce profit where profit = revenue – total price paid for resources?

Maximize z When $u = \begin{bmatrix} 2 & 0 \end{bmatrix}$ does executing Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ activity 2 produce profit where profit = revenue - totalSubject to: price paid for resources? $2x_0 + x_1 + 3x_2 + s_0 + 0s_1 = 6$ Revenue per unit of activity 2 = 9 $x_0 + 2x_1 + 4x_2 + 0s_0 + s_1 = 9$ Resource 1 units consumed per unit of activity = 3Cost of resource 1 units consumed per $x_0, x_1, x_2, s_0, s_1 >= 0$ unit of activity = 3 * 2Resource 2 units consumed per unit of activity = 4Cost of resource 2 units consumed per unit of activity = 0 * 4Profit = 9 - 6 = 3

Maximize z Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to: $2x_0 + x_1 + 3x_2 + s_0 + 0s_1 = 6$ $x_0 + 2x_1 + 4x_2 + 0s_0 + s_1 = 9$ $x_0, x_1, x_2, s_0, s_1 \ge 0$ When basic activities are activity 0 and activity 1, what are the prices?

THASITUTE OF ILCH NO LOS

Maximize z

Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:

$$x_0, x_1, x_2, s_0, s_1 >= 0$$

When basic activities are activity 0 and activity 1, what are the prices?Prices are [1 2].

Does doing any activity other than the basic activities decrease profit?

Maximize z Where $4x_0 + 5x_1 + 9x_2 + 0s_0 + 0s_1 = z$ Subject to:	When basic activities are activity 0 and activity 1, what are the prices? Prices are [1 2].
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Does doing every activity other than the basic activities decrease profit?
$x_0, x_1, x_2, s_0, s_1 >= 0$	Consider activity 2: Revenue per unit = 9 Cost for resources = $1*3 + 2*4 = 11$ Profit per unit = $9 - 11 = -2$. Yes, all activities reduce profit.

The Primal and Dual Problems

- Primal problem: Max c.x subject to A.x = < b, x > = 0.
- Dual problem: Min u.b subject to u.A >= c, u >= 0.
- The price-based meaning of the dual problem is:
- 1. u.A >= c means prices are such that no activity k yields a positive profit ($c_k - u.A_k$).
- 2. $u \ge 0$ means all prices are non-negative.
- 3. Objective: find prices to minimize total value of resources (subject to constraint that no activity yields positive profit).

Theorem u.b >= c.x

Proof?

CS 101, Ec 101

Theorem u.b >= c.x

- Since x >= 0 and u.A >= c: u.A.x >= c.x
- Since u >= 0 and A.x =< b: u.A.x = < u.b</p>
- From the above two inequalities: u.b >= c.x

Conditions for u.b = c.x?

Conditions for u.b = c.x ?

- Since x >= 0 and u.A >= c: u.A.x >= c.x
- Since u >= 0 and A.x =< b: u.A.x = < u.b</p>
- If u.b = c.x: then u.A.x = c.x and u.A.x = u.b.
- When is u.A.x = c.x? u.A.x = c.x Is the same as (c - u.A).x = 0 Is the same as: For all k: if (c - u.A)_k > 0 then x_k = 0

Complementary Slackness

u.b = c.x if and only if:

For all k: if
$$c_k < (u.A)_k$$
 then $x_k = 0$
For all k: if $b_k > (A.x)_k$ then $u_k = 0$

- In economic terms
- if $c_k < (u.A)_k$ then $x_k = 0$ means: if executing activity k strictly decreases revenue then don't execute activity k.
- if $b_k > (A.x)_k$ then $u_k = 0$ means: if a resource isn't scarce then it has no value (no positive price).

Kuhn Tucker Conditions

- The simplex algorithm tells us that the complementary slackness condition can be reached.
- This is generalized by the Kuhn-Tucker conditions that are discussed in other classes at Caltech.

