CS101, Ec 101

- Special topics in Computer Science.
- Selected topics in Economics
- Instructors:
- John Ledyard, Economics
- Mani Chandy, Computer Science
- Guest lecturers
- Time/place : Tuesday, Thursday 9 - 10:30, Jrg 74

Course Goals

- Survey theories in economics and information science and technology (IST).
- Apply theories to problems at the intersection of economics and IST.
- Emphasis is on:
- Survey; not in-depth detailed discussion of selected areas
- Fundamental theorems
- Pointers to further courses and research opportunities

Course Grading and Load

- No final, mid-terms, or quizzes.
- 6-8 homework assignments.
- Possibly a couple of programming assignments.
- The units for this class are fair:
- 9 units so 9 hours/week for an average Caltech student.
- 3 hours lecture, 6 hours homework or lab.

Course Support Material

- No text.
- Slides and other notes will be provided in some (but not all lectures). You will be expected to attend lectures and take notes.
- We will cover only the fundamental theorems in class; you are expected to study the rest of the slides and notes on your own.

Research Opportunities

- We will focus on fundamental theorems, and not applications or research opportunities in the lectures (because we don't have time to do both).
- You are encouraged to explore research opportunities.
- Research focuses on integrating economics and IST by studying economic networks with significant physical constraints.
- Electrical power utility
- Event Web: Event services utility
- Gas utility

Research Opportunities

- Electric Utility
- Dr. Dan Zimmerman, CS
- Shaun Lee, CS
- Richard Murray, John Ledyard, Mani Chandy
- www.surf.caltech.edu/opportunities/abstracts/05EAS Chandy3.h tm
- Event Utility
- Lu Tian: Economics of events
- Jonathan Lurie, building the Event Web:
- www.surf.caltech.edu/opportunities/abstracts/05EAS_Chandy1.h tm

Topics (Tentative)

- Optimization: January 4, 6, 11, 13: Mani
- Game Theory: January 18, 20, 25, 27: John
- Decision Theory: February 1, 3, 8, 10: Mani, John
- Computer Science Fundamentals: Economics applications: February 15, 17, 22, 24: Mani
- Fundamentals of Economics; IST applications: March 1, 3, 8

Mathematical Programming: Fundamentals

Outline

- The problem domain

Definitions

Problem Domain: Optimization

- Maximize $f(x)$
- Subject to $g(x)=<c$
- Where $f(x)$ is a function from a vector space to the reals
- And $g(x)$ is a function from the vector space to a vector of length m and
- c is a constant vector of length m .
- $f(x)$ is called the objective function
- $g(x)=<c$ is called the set of constraints.

Problem Domain: Optimization

- Maximize $f(x)$
- Subject to $g(x)=<c$
- This problem is the same as:
- Maximize $f(x)$ over all x in the set $\{x \mid g(x)=<c\}$
- The set $\{x \mid g(x)=<c\}$ is called the feasible region.

Definitions: Convex Set

Convex set is a set of points in a vector space such that for any two points x and y in the set, the line segment between the two points is also in the set.

Definitions: Convex Set

The line segment between any two points x and y in set S lies within set S; hence set S is convex.

Problems: Which Sets are Convex?

B

Problems: All Line Segments Lie in Set?

Line segment not in set

Problems: Line Segments

Definitions: Convex Set

Convex set is a set of points in a vector space such that for any two points x and y in the set, the line segment between the two points is also in the set.

> For all x, y in set S : For all r where $0=<r=<1$: $$
(1-r) \cdot x+r . y \text { is in } S
$$

As r varies from 0 to 1 , the point (1-r). $\mathrm{x}+\mathrm{r} . \mathrm{y}$ traverses the line segment from x to y .

Each point in the line segment can be represented as (1-r).x + r.y for some value of r.

Definition: Convex Combination

- A point q is in a convex combination of a set of points p_1, p_2, ..., p_k if and only if there exists non-negative numbers (scalars) r_1, r_2, ..., r_k such that:

$$
\begin{aligned}
& q=\operatorname{Sum} \text { over } \mathrm{j} \text { of } \mathrm{p} \mathrm{j}^{*} \mathrm{r} \mathrm{j} \\
& \text { And } \\
& \text { Sum over } \mathrm{j}_{\mathrm{of}}^{\mathrm{r}} \mathrm{j}=1
\end{aligned}
$$

Example: Convex Combination

Example: Convex Combination

What is the set of all points that are convex combinations of these 5 points?

It is the set of points within this polygon.

Theorems about Convex Sets

- A set S is a convex set if and only if every convex combination of any (non-empty) set of points in S is also in S.
- Note that the points on the line segment between points x and y are convex combinations of x and y.

Point of Closure

- A point p is a point of closure of a set S if and only if every ball of positive radius with center p has a nonempty intersection with set S.
- Examples: What are the points of closure for the following sets?
- $0=<x<2$
- $0=<x=<2$
- $x^{\star} x+y^{\star} y<4$
- $x^{*} x+y^{*} y=<4$

Point of Closure

- Examples: What are the points of closure for the following sets?
- $0=<x<2 \rightarrow 0=<x=<2$
- $0=<x=<2 \rightarrow 0=<x=<2$
- $x^{*} x+y^{*} y<4 \rightarrow x^{*} x+y^{*} y=<4$
- $x^{*} x+y^{\star} y=<4 \rightarrow x^{*} x+y^{*} y=<4$

Definition: Closed Set

- A set is closed if and only if it includes all its points of closure.
- Examples: Which of the following sets are closed?
- $0=<x<2$
- $0=<x=<2$
- $x^{*} x+y^{*} y<4$
- $x^{\star} x+y^{*} y=<4$

Definition: Closed Set

- A set is closed if and only if it includes all its points of closure.
- Examples: Which of the following sets are closed?
- $0=<x<2 \rightarrow$ NOT CLOSED
- $0=<x=<2 \rightarrow$ CLOSED
- $x^{*} x+y^{*} y<4 \rightarrow$ NOT CLOSED
- $x^{\star} x+y^{*} y=<4 \rightarrow$ CLOSED

Definition: Extreme Point

- A point v is an extreme point of a set S (of points in a vector space) if and only if:
- v is in S
- There do not exists points u and w, distinct from v, where:
- u and ware in S, and
- the line segment between u and w passes through v.

Extreme Points

What are the extreme points?

Extreme Points

Example: Extreme Points

What are extreme points of the disk?

Example: Extreme Points

Extreme points of the disk are the set of points on the circumference

Extreme Points: Examples

- What are extreme points of the following sets?
- $\{x \mid 0=<x=<4\}$
- $\left\{x \mid x^{*} x+y^{*} y=<16\right\}$
- $\{(\mathrm{x}, \mathrm{y}) \mid 0=<\mathrm{x}=<1$ AND $0=<\mathrm{y}=<1\}$

Extreme Points: Examples

- What are extreme points of the following sets?
- $\{x \mid 0=<x=<4\}$
- $x=0$ and $x=4$
- $\left\{x \mid x^{*} x+y^{*} y=<16\right\}$
- $\left\{(x, y) \mid x^{*} x+y^{*} y=16\right\}$
- $\{(\mathrm{x}, \mathrm{y}) \mid 0=<\mathrm{x}=<1$ AND $0=<\mathrm{y}=<1\}$
- $\{(x, y)=(0,0)$ or $(0,1)$ or $(1,0)$ or $(1,1)\}$

Definition: Bounded Set

- A set is bounded if and only if there exists a ball with finite radius such that the set is included within the ball.
- Examples: Are the following sets bounded?
- $\{x \mid x>=0\}$
- $\{(x, y) \mid x>=0$ and $y>=0$ and $x+y=<1\}$

Definition: Bounded Set

- A set is bounded if and only if there exists a ball with finite radius such that the set is included within the ball.
- Examples: Are the following sets bounded?
- $\{x \mid x>=0\}$
- No, because x can become arbitrarily large
- $\{(x, y) \mid x>=0$ and $y>=0$ and $x+y=<1\}$
- Yes, because this set is included within a ball with center $(0,0)$ and radius 1 .

Theorem

- A closed bounded convex set S is the set of points that are convex combinations of the extreme points of S.

Definition: Convex Function

Line segment in domain

Definition: Convex Function

- Let f be a function defined over a convex set.
- f is convex if and only if, for every two points x_1, x_2 in the domain of f and for any non-negative scalars r_1 and r_2 that sum to 1:
r_1.f(x_1) + r_2.f(x_2) >= f(r_1*x_1 + r_2 * x_2)

Definition: Concave Function

Definition: Concave Function

- Let f be a function defined over a convex set.
- f is concave if and only if, for every two points $x _1, x _2$ in the domain of f and for any non-negative scalars r_1 and r_2 that sum to 1:

$$
\text { r_1.f(x_1) + r_2.f(x_2) }=<\mathrm{f}\left(\mathrm{r}_{-} 1^{*} x _1+r _2\right. \text { * x_2) }
$$

Local and Global Maxima

Local Maximum

- Given a problem, maximize $f(x)$ subject to x in set S,
- Where set S is the feasible region.
- A point p in S is a local maximum for this problem if and only if there exists a ball with positive radius centered at p such that for all points q in the ball and in S :

$$
f(p)>=f(q)
$$

Global Maximum

- Given a problem, maximize $f(x)$ subject to x in set S,
- Where set S is the feasible region.
- A point p in S is a global maximum for this problem if and only if for all points q in S :

$$
f(p)>=f(q)
$$

