CS101, Ec 101

- Special topics in Computer Science.
- Selected topics in Economics

Instructors:

- John Ledyard, Economics
- Mani Chandy, Computer Science
- Guest lecturers
- Time/place : Tuesday, Thursday 9 10:30, Jrg 74

Course Goals

- Survey theories in economics and information science and technology (IST).
- Apply theories to problems at the intersection of economics and IST.
- Emphasis is on:
 - Survey; not in-depth detailed discussion of selected areas
 - Fundamental theorems
 - Pointers to further courses and research opportunities

Course Grading and Load

- No final, mid-terms, or quizzes.
- 6 8 homework assignments.
- Possibly a couple of programming assignments.
- The units for this class are fair:
 - 9 units so 9 hours/week for an average Caltech student.
 - 3 hours lecture, 6 hours homework or lab.

Course Support Material

- No text.
- Slides and other notes will be provided in some (but not all lectures). You will be expected to attend lectures and take notes.
- We will cover only the fundamental theorems in class; you are expected to study the rest of the slides and notes on your own.

Research Opportunities

- We will focus on fundamental theorems, and not applications or research opportunities in the lectures (because we don't have time to do both).
- You are encouraged to explore research opportunities.
- Research focuses on integrating economics and IST by studying economic networks with significant physical constraints.
 - Electrical power utility
 - Event Web: Event services utility
 - Gas utility

Research Opportunities

Electric Utility

- Dr. Dan Zimmerman, CS
- Shaun Lee, CS
- Richard Murray, John Ledyard, Mani Chandy
- www.surf.caltech.edu/opportunities/abstracts/05EAS_Chandy3.h
 <u>tm</u>

Event Utility

- Lu Tian: Economics of events
- Jonathan Lurie, building the Event Web:
- www.surf.caltech.edu/opportunities/abstracts/05EAS_Chandy1.h tm

Topics (Tentative)

- Optimization: January 4, 6, 11, 13: Mani
- Game Theory: January 18, 20, 25, 27: John
- Decision Theory: February 1, 3, 8, 10: Mani, John
- Computer Science Fundamentals: Economics applications: February 15, 17, 22, 24: Mani
- Fundamentals of Economics; IST applications: March 1, 3, 8

Mathematical Programming: Fundamentals

Outline

- The problem domain
- Definitions

Problem Domain: Optimization

- Maximize f(x)
- Subject to g(x) =< c</p>
 - Where f(x) is a function from a vector space to the reals
 - And g(x) is a function from the vector space to a vector of length m and
 - c is a constant vector of length m.
- f(x) is called the *objective function*
- $g(x) = \langle c | s called the set of$ *constraints*.

Problem Domain: Optimization

- Maximize f(x)
- Subject to g(x) = < c</p>
- This problem is the same as:
- Maximize f(x) over all x in the set {x | g(x) = < c}</p>
- The set $\{x \mid g(x) = \langle c \rangle\}$ is called the **feasible region.**

Definitions: Convex Set

Convex set is a set of points in a vector space such that for any two points x and y in the set, the line segment between the two points is also in the set.

Definitions: Convex Set

The line segment between any two points x and y in set S lies within set S; hence set S is convex.

Problems: Which Sets are Convex?

Problems: All Line Segments Lie in Set?

Problems: Line Segments

Definitions: Convex Set

Convex set is a set of points in a vector space such that for any two points x and y in the set, the line segment between the two points is also in the set.

For all x, y in set S: For all r where 0 =< r =< 1: (1-r).x + r.y is in S

As r varies from 0 to 1, the point (1-r).x + r.y traverses the line segment from x to y.

Each point in the line segment can be represented as (1-r).x + r.y for some value of r.

CS 101, Ec 101

Definition: Convex Combination

A point q is in a convex combination of a set of points p_1, p_2, ..., p_k if and only if there exists non-negative numbers (scalars) r_1, r_2, ..., r_k such that:

Example: Convex Combination

What is the set of all points that are convex combinations of these 5 points?

Example: Convex Combination

What is the set of all points that are convex combinations of these 5 points?

It is the set of points within this polygon.

Theorems about Convex Sets

- A set S is a convex set if and only if every convex combination of any (non-empty) set of points in S is also in S.
- Note that the points on the line segment between points x and y are convex combinations of x and y.

Point of Closure

- A point p is a *point of closure* of a set S if and only if every ball of <u>positive</u> radius with center p has a nonempty intersection with set S.
- Examples: What are the points of closure for the following sets?
 - 0 =< x < 2
 - 0 =< x =< 2
 - $x^*x + y^*y < 4$
 - $x^*x + y^*y = < 4$

Point of Closure

- Examples: What are the points of closure for the following sets?
 - 0 =< x < 2 → 0 =< x =< 2
 - 0 =< x =< 2 → 0 =< x =< 2
 - $x^*x + y^*y < 4 \rightarrow x^*x + y^*y = < 4$
 - $x^*x + y^*y = < 4 \rightarrow x^*x + y^*y = < 4$

Definition: Closed Set

- A set is closed if and only if it includes all its points of closure.
- Examples: Which of the following sets are closed?
 - 0 =< x < 2
 - 0 =< x =< 2
 - $x^*x + y^*y < 4$
 - $x^*x + y^*y = < 4$

Definition: Closed Set

- A set is closed if and only if it includes all its points of closure.
- Examples: Which of the following sets are closed?
 - $0 = < x < 2 \rightarrow \text{NOT CLOSED}$
 - 0 =< x =< 2 → CLOSED
 - $x^*x + y^*y < 4 \rightarrow NOT CLOSED$
 - x*x + y*y =< 4 → CLOSED</p>

Definition: Extreme Point

- A point v is an extreme point of a set S (of points in a vector space) if and only if:
 - v is in S
 - There do not exists points u and w, distinct from v, where:
 - u and w are in S, and
 - the line segment between u and w passes through v.

Extreme Points

What are the extreme points?

CS 101, Ec 101

Extreme Points

Example: Extreme Points

What are extreme points of the disk?

Example: Extreme Points

Extreme points of the disk are the set of points on the circumference

Extreme Points: Examples

- What are extreme points of the following sets?
- {x | 0 =< x =< 4}
- { x | x*x + y*y =< 16 }</pre>
- { (x,y) | 0 =< x =< 1 AND 0 =< y =< 1}</pre>

Extreme Points: Examples

- What are extreme points of the following sets?
- {x | 0 =< x =< 4}</p>
 - x = 0 and x = 4
- { x | x*x + y*y =< 16 }</pre>
 - { (x,y) | $x^*x + y^*y = 16$ }
- { (x,y) | 0 =< x =< 1 AND 0 =< y =< 1}</pre>
 - {(x,y) = (0,0) or (0,1) or (1,0) or (1,1) }

Definition: Bounded Set

- A set is bounded if and only if there exists a ball with finite radius such that the set is included within the ball.
- Examples: Are the following sets bounded?
- $\{x \mid x \ge 0\}$
- { (x,y) | x >= 0 and y >= 0 and x + y =< 1 }</pre>

Definition: Bounded Set

- A set is bounded if and only if there exists a ball with finite radius such that the set is included within the ball.
- Examples: Are the following sets bounded?
- {x | x >= 0}
 - No, because x can become arbitrarily large
- { (x,y) | x >= 0 and y >= 0 and x + y =< 1 }</pre>
 - Yes, because this set is included within a ball with center (0,0) and radius 1.

Theorem

A closed bounded convex set S is the set of points that are convex combinations of the extreme points of S.

Definition: Convex Function

Line segment in domain

Definition: Convex Function

- Let f be a function defined over a convex set.
- f is convex if and only if, for every two points x_1, x_2 in the domain of f and for any non-negative scalars r_1 and r_2 that sum to 1:

$$r_1.f(x_1) + r_2.f(x_2) >= f(r_1*x_1 + r_2*x_2)$$

Definition: Concave Function

Line segment in domain

Definition: Concave Function

- Let f be a function defined over a convex set.
- f is concave if and only if, for every two points x_1, x_2 in the domain of f and for any non-negative scalars r_1 and r_2 that sum to 1:

$$r_1.f(x_1) + r_2.f(x_2) = < f(r_1*x_1 + r_2*x_2)$$

Local and Global Maxima

Local Maximum

- Given a problem, maximize f(x) subject to x in set S,
- Where set S is the feasible region.
- A point p in S is a local maximum for this problem if and only if there exists a ball with positive radius centered at p such that for all points q in the ball and in S:

f(p) >= f(q)

Global Maximum

- Given a problem, maximize f(x) subject to x in set S,
- Where set S is the feasible region.
- A point p in S is a global maximum for this problem if and only if for all points q in S:

f(p) >= f(q)

