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1.

2. (a) Let x ∈ H and y ∈ H be two generic tuples in H. The objective is to prove that for any
a ≤ 1, we have that z = a ·x + (1− a) · y is a tuple in H. By definition of H this is true
iff g(z) ≤ d. Due to that g is convex by hypothesis, we have that

g(z) = g(a · x + (1− a) · y) ≤ a · g(x) + (1− a) · g(y) (1)

Since a ≤ 1 then

a · g(x) + (1− a) · g(y) ≤ max{g(x), g(y)} ≤ d (2)

Combining 1 and 2 we can conclude that g(z) ≤ d. This ends the proof.

(b) Suppose by contradiction that H is not closed. Then there exists y ∈ dom(g) such that
g(y) > d and a sequence of tuples x1, x2, . . . ,xn such that

• xi ∈ H

• limi→∞ xi = y

Since the function g is convex by hypothesis, then g is also continuous in all domain.
Recollect the continuous function theorem for sequences stating: If an is a sequence of
real numbers, and if limn→∞ an = L, then the limn→∞ f(an) = f(L) if f is a function
that is continuous at L and defined at all an. It holds:

lim
n→∞ g(xn) = g( lim

n→∞xn) (3)

Since xi ∈ H then limn→∞ g(xn) ≤ d. However g(limn→∞ xn) = g(y) > d. Hence, a
contradiction has been obtained and consequenly H must be closed.

3. (a) We start showing that the following statement holds: If for all j we have gj(x) ≤ bj and
gj(x) ≤ qj for some fixed x, then gj(x) ≤ a · bj + (1− a) · qj for any a ≤ 1. Let x = x0

a tuple which verifies the hypothesis of the statement. Due to the previous exercise we
know that Hj = {x : gj(x) ≤ bj} is a convex set. Therefore we can find v, w ∈ Hj such
that x0 = a · v + (1 − a) ·w for some a < 1, v, w ∈ Hj . Due to the assumption that gj

is convex, we have that

gj(a · v + (1− a) ·w) ≤ a · gj(v) + (1− a) · gj(w) (4)

By hypothesis of the statement gj(v) ≤ bj and gj(w) ≤ qj , thus, we have that

a · gj(v) + (1− a) · gj(w) ≤ a · bj + (1− a) · qj (5)



This ends the proof of the statement. It can now be easily concluded that for any a < 1
and for any pair b, q of vectors

z(a · b + (1− a) · q) ≥ max{z(b), z(q)} ≥ a · z(b) + (1− a) · z(q) (6)

The first part of inequality 6 follows because every feasible solution for z(b) and z(q) is
also a feasible solution for z(a · b + (1 − a) · q) due to the statement. Since a < 1 it is
easy to see that also the second part of the inequality holds.

Hence, we have proven that z is a concave function.

(b) z is in general nonlinear. In order to convince yourself, consider the function z(b), where
b = (b1, b2) is two dimensional vector defined as:

z(b) = max−x2

subject to: − x ≤ b1, x ≤ b2

Notice that −x2 is a concave function and the two constraints in the problem are linear
(therefore convex).

Let b = (−2, 3) and q = (−3, 4). We then have that z(b) = −4 and z(q) = −9. We also
have that z(b + q) = 25, where b + q = (−5, 7). Therefore z(b + q) 6= z(b) + z(q) which
means that z is nonlinear.

(c) The function z is monotonic non decreasing, i.e. if b ≥ q, then z(b) ≥ z(q). If the vector
x maximizes f when the vector of constraints is q (i.e. gj(x) ≤ qj), then the same vector
x will be a feasible solution for the maximization problem when the vector of constraints
is b (in fact gj(x) ≤ qj ≤ bj). Hence, z(b) ≥ z(q).
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