CALIFORNIA INSTITUTE OF TECHNOLOGY

Selected Topics in Computer Science and Economics

CS/EC/101b

K. Mani Chandy, John Ledyard Homework Set \#1 Solutions

Issued: 7 Jan 05 Winter 2005

Due: 17 Jan 05
1.
2. (a) Let $\boldsymbol{x} \in H$ and $\boldsymbol{y} \in H$ be two generic tuples in H. The objective is to prove that for any $a \leq 1$, we have that $\boldsymbol{z}=a \cdot \boldsymbol{x}+(1-a) \cdot \boldsymbol{y}$ is a tuple in H. By definition of H this is true iff $g(\boldsymbol{z}) \leq d$. Due to that g is convex by hypothesis, we have that

$$
\begin{equation*}
g(\boldsymbol{z})=g(a \cdot \boldsymbol{x}+(1-a) \cdot \boldsymbol{y}) \leq a \cdot g(\boldsymbol{x})+(1-a) \cdot g(\boldsymbol{y}) \tag{1}
\end{equation*}
$$

Since $a \leq 1$ then

$$
\begin{equation*}
a \cdot g(\boldsymbol{x})+(1-a) \cdot g(\boldsymbol{y}) \leq \max \{g(\boldsymbol{x}), g(\boldsymbol{y})\} \leq d \tag{2}
\end{equation*}
$$

Combining 1 and 2 we can conclude that $g(\boldsymbol{z}) \leq d$. This ends the proof.
(b) Suppose by contradiction that H is not closed. Then there exists $\boldsymbol{y} \in \operatorname{dom}(g)$ such that $g(\boldsymbol{y})>d$ and a sequence of tuples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ such that

- $\boldsymbol{x}_{i} \in H$
- $\lim _{i \rightarrow \infty} \boldsymbol{x}_{i}=\boldsymbol{y}$

Since the function g is convex by hypothesis, then g is also continuous in all domain. Recollect the continuous function theorem for sequences stating: If a_{n} is a sequence of real numbers, and if $\lim _{n \rightarrow \infty} a_{n}=L$, then the $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$ if f is a function that is continuous at L and defined at all a_{n}. It holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(\boldsymbol{x}_{n}\right)=g\left(\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}\right) \tag{3}
\end{equation*}
$$

Since $\boldsymbol{x}_{i} \in H$ then $\lim _{n \rightarrow \infty} g\left(\boldsymbol{x}_{n}\right) \leq d$. However $g\left(\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}\right)=g(\boldsymbol{y})>d$. Hence, a contradiction has been obtained and consequenly H must be closed.
3. (a) We start showing that the following statement holds: If for all j we have $g_{j}(\boldsymbol{x}) \leq b_{j}$ and $g_{j}(\boldsymbol{x}) \leq q_{j}$ for some fixed \boldsymbol{x}, then $g_{j}(\boldsymbol{x}) \leq a \cdot b_{j}+(1-a) \cdot q_{j}$ for any $a \leq 1$. Let $\boldsymbol{x}=\boldsymbol{x}_{0}$ a tuple which verifies the hypothesis of the statement. Due to the previous exercise we know that $H_{j}=\left\{\boldsymbol{x}: g_{j}(\boldsymbol{x}) \leq b_{j}\right\}$ is a convex set. Therefore we can find $\boldsymbol{v}, \boldsymbol{w} \in H_{j}$ such that $\boldsymbol{x}_{0}=a \cdot \boldsymbol{v}+(1-a) \cdot \boldsymbol{w}$ for some $a<1, \boldsymbol{v}, \boldsymbol{w} \in H_{j}$. Due to the assumption that g_{j} is convex, we have that

$$
\begin{equation*}
g_{j}(a \cdot \boldsymbol{v}+(1-a) \cdot \boldsymbol{w}) \leq a \cdot g_{j}(\boldsymbol{v})+(1-a) \cdot g_{j}(\boldsymbol{w}) \tag{4}
\end{equation*}
$$

By hypothesis of the statement $g_{j}(\boldsymbol{v}) \leq b_{j}$ and $g_{j}(\boldsymbol{w}) \leq q_{j}$, thus, we have that

$$
\begin{equation*}
a \cdot g_{j}(\boldsymbol{v})+(1-a) \cdot g_{j}(\boldsymbol{w}) \leq a \cdot b_{j}+(1-a) \cdot q_{j} \tag{5}
\end{equation*}
$$

This ends the proof of the statement. It can now be easily concluded that for any $a<1$ and for any pair $\boldsymbol{b}, \boldsymbol{q}$ of vectors

$$
\begin{equation*}
z(a \cdot \boldsymbol{b}+(1-a) \cdot \boldsymbol{q}) \geq \max \{z(\boldsymbol{b}), z(\boldsymbol{q})\} \geq a \cdot z(\boldsymbol{b})+(1-a) \cdot z(\boldsymbol{q}) \tag{6}
\end{equation*}
$$

The first part of inequality 6 follows because every feasible solution for $z(\boldsymbol{b})$ and $z(\boldsymbol{q})$ is also a feasible solution for $z(a \cdot \boldsymbol{b}+(1-a) \cdot \boldsymbol{q})$ due to the statement. Since $a<1$ it is easy to see that also the second part of the inequality holds.
Hence, we have proven that z is a concave function.
(b) z is in general nonlinear. In order to convince yourself, consider the function $z(\boldsymbol{b})$, where $\boldsymbol{b}=\left(b_{1}, b_{2}\right)$ is two dimensional vector defined as:

$$
\begin{gathered}
z(\boldsymbol{b})=\max -x^{2} \\
\text { subject to: }-x \leq b_{1}, x \leq b_{2}
\end{gathered}
$$

Notice that $-x^{2}$ is a concave function and the two constraints in the problem are linear (therefore convex).
Let $\boldsymbol{b}=(-2,3)$ and $\boldsymbol{q}=(-3,4)$. We then have that $z(\boldsymbol{b})=-4$ and $z(\boldsymbol{q})=-9$. We also have that $z(\boldsymbol{b}+\boldsymbol{q})=25$, where $\boldsymbol{b}+\boldsymbol{q}=(-5,7)$. Therefore $z(\boldsymbol{b}+\boldsymbol{q}) \neq z(\boldsymbol{b})+z(\boldsymbol{q})$ which means that z is nonlinear.
(c) The function z is monotonic non decreasing, i.e. if $\boldsymbol{b} \geq \boldsymbol{q}$, then $z(\boldsymbol{b}) \geq z(\boldsymbol{q})$. If the vector \boldsymbol{x} maximizes f when the vector of constraints is \boldsymbol{q} (i.e. $g_{j}(\boldsymbol{x}) \leq q_{j}$), then the same vector \boldsymbol{x} will be a feasible solution for the maximization problem when the vector of constraints is \boldsymbol{b} (in fact $\left.g_{j}(\boldsymbol{x}) \leq q_{j} \leq b_{j}\right)$. Hence, $z(\boldsymbol{b}) \geq z(\boldsymbol{q})$.

