CALIFORNIA INSTITUTE OF TECHNOLOGY Selected Topics in Computer Science and Economics

CS/EC/101b

K. Mani Chandy, John Ledyard	Homework Set #1 Solutions	Issued:	7 Jan 05
Winter 2005		Due:	17 Jan 05

1.

2. (a) Let $\boldsymbol{x} \in H$ and $\boldsymbol{y} \in H$ be two generic tuples in H. The objective is to prove that for any $a \leq 1$, we have that $\boldsymbol{z} = a \cdot \boldsymbol{x} + (1-a) \cdot \boldsymbol{y}$ is a tuple in H. By definition of H this is true iff $g(\boldsymbol{z}) \leq d$. Due to that g is convex by hypothesis, we have that

$$g(\boldsymbol{z}) = g(\boldsymbol{a} \cdot \boldsymbol{x} + (1-\boldsymbol{a}) \cdot \boldsymbol{y}) \le \boldsymbol{a} \cdot g(\boldsymbol{x}) + (1-\boldsymbol{a}) \cdot g(\boldsymbol{y})$$
(1)

Since $a \leq 1$ then

$$a \cdot g(\boldsymbol{x}) + (1-a) \cdot g(\boldsymbol{y}) \le \max\{g(\boldsymbol{x}), g(\boldsymbol{y})\} \le d$$
(2)

Combining 1 and 2 we can conclude that $g(z) \leq d$. This ends the proof.

- (b) Suppose by contradiction that H is not closed. Then there exists $\boldsymbol{y} \in \text{dom}(g)$ such that $g(\boldsymbol{y}) > d$ and a sequence of tuples $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n$ such that
 - $\boldsymbol{x}_i \in H$
 - $\lim_{i \to \infty} x_i = y$

Since the function g is convex by hypothesis, then g is also continuous in all domain. Recollect the continuous function theorem for sequences stating: If a_n is a sequence of real numbers, and if $\lim_{n\to\infty} a_n = L$, then the $\lim_{n\to\infty} f(a_n) = f(L)$ if f is a function that is continuous at L and defined at all a_n . It holds:

$$\lim_{n \to \infty} g(\boldsymbol{x}_n) = g(\lim_{n \to \infty} \boldsymbol{x}_n) \tag{3}$$

Since $\mathbf{x}_i \in H$ then $\lim_{n\to\infty} g(\mathbf{x}_n) \leq d$. However $g(\lim_{n\to\infty} \mathbf{x}_n) = g(\mathbf{y}) > d$. Hence, a contradiction has been obtained and consequency H must be closed.

3. (a) We start showing that the following statement holds: If for all j we have $g_j(\boldsymbol{x}) \leq b_j$ and $g_j(\boldsymbol{x}) \leq q_j$ for some fixed \boldsymbol{x} , then $g_j(\boldsymbol{x}) \leq a \cdot b_j + (1-a) \cdot q_j$ for any $a \leq 1$. Let $\boldsymbol{x} = \boldsymbol{x}_0$ a tuple which verifies the hypothesis of the statement. Due to the previous exercise we know that $H_j = \{\boldsymbol{x} : g_j(\boldsymbol{x}) \leq b_j\}$ is a convex set. Therefore we can find $\boldsymbol{v}, \boldsymbol{w} \in H_j$ such that $\boldsymbol{x}_0 = a \cdot \boldsymbol{v} + (1-a) \cdot \boldsymbol{w}$ for some $a < 1, \boldsymbol{v}, \boldsymbol{w} \in H_j$. Due to the assumption that g_j is convex, we have that

$$g_j(a \cdot \boldsymbol{v} + (1-a) \cdot \boldsymbol{w}) \le a \cdot g_j(\boldsymbol{v}) + (1-a) \cdot g_j(\boldsymbol{w}) \tag{4}$$

By hypothesis of the statement $g_j(\boldsymbol{v}) \leq b_j$ and $g_j(\boldsymbol{w}) \leq q_j$, thus, we have that

$$a \cdot g_j(\boldsymbol{v}) + (1-a) \cdot g_j(\boldsymbol{w}) \le a \cdot b_j + (1-a) \cdot q_j \tag{5}$$

This ends the proof of the statement. It can now be easily concluded that for any a < 1and for any pair **b**, **q** of vectors

$$z(a \cdot \boldsymbol{b} + (1-a) \cdot \boldsymbol{q}) \ge \max\{z(\boldsymbol{b}), z(\boldsymbol{q})\} \ge a \cdot z(\boldsymbol{b}) + (1-a) \cdot z(\boldsymbol{q})$$
(6)

The first part of inequality 6 follows because every feasible solution for $z(\mathbf{b})$ and $z(\mathbf{q})$ is also a feasible solution for $z(a \cdot \mathbf{b} + (1 - a) \cdot \mathbf{q})$ due to the statement. Since a < 1 it is easy to see that also the second part of the inequality holds.

Hence, we have proven that z is a concave function.

(b) z is in general nonlinear. In order to convince yourself, consider the function z(b), where $b = (b_1, b_2)$ is two dimensional vector defined as:

$$z(\mathbf{b}) = \max -x^2$$

subject to: $-x \le b_1, x \le b_2$

Notice that $-x^2$ is a concave function and the two constraints in the problem are linear (therefore convex).

Let $\mathbf{b} = (-2, 3)$ and $\mathbf{q} = (-3, 4)$. We then have that $z(\mathbf{b}) = -4$ and $z(\mathbf{q}) = -9$. We also have that $z(\mathbf{b} + \mathbf{q}) = 25$, where $\mathbf{b} + \mathbf{q} = (-5, 7)$. Therefore $z(\mathbf{b} + \mathbf{q}) \neq z(\mathbf{b}) + z(\mathbf{q})$ which means that z is nonlinear.

(c) The function z is monotonic non decreasing, i.e. if $b \ge q$, then $z(b) \ge z(q)$. If the vector \boldsymbol{x} maximizes f when the vector of constraints is \boldsymbol{q} (i.e. $g_j(\boldsymbol{x}) \le q_j$), then the same vector \boldsymbol{x} will be a feasible solution for the maximization problem when the vector of constraints is \boldsymbol{b} (in fact $g_j(\boldsymbol{x}) \le q_j \le b_j$). Hence, $z(\boldsymbol{b}) \ge z(\boldsymbol{q})$.