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Qutline

® |ntro to compressive sensing

® Paper presentation




Sensing by sampling:
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Introduction to Compressive Sensing
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Begs the following: Can we measure the “compressive”
measurement set directly?
A: yes.




Introduction to Compressive Sensing

® Traditional (Nyquist) sampling is highly pessimistic
® Doesn’t consider any structure of signal

® Compressive sensing is optimistic
® |everages compressibility

® => only need K<<N measurements to
reconstruct an N-dim signal

® |[ntuition:
® (S encodes sparsity as information

® Allows for tradeoff between sparsity and # of
measurements




Compressive Sensing:

e Directly acquire “compressed” data

e Replace samples by more general "measurements”
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Compressive Sensing:

e Directly acquire "compressed” data

e Replace samples by more genera
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Why Does It Work?

e Random projection @
not full rank...
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CS Signal Recovery

e Random projection @
not full rank...
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Sparse Recovery via £; Minimization

e Say fo is K-sparse, ® obeys RIP for sets of size 4K
e Measure y = @ f

e Then solving

mfin |f|le, sSubjectto ®f =1y

will recover f, exactly

e We can recover f, from
M 2 K -logN

Incoherent measurements by solving a fractable program

e Number of measurements ~ number of active components




Sequential CS algorithm (segue)

Given seed measurement matrix X — y = Xf
1. Choose new row x, randomly
2. Form: X' = [X x,|!

. Measure: y' = X' f

. Reconstruct: ¢ = argminc{||c||s, |y = X' UL},
where fy = Zivzl &)

. Repeat, starting with X’

Goal of “CS and Bayesian Experimental Design”:
Improve Sequential CS by

e Optimizing step (1) above for general distributions

e Optimizing step (4) above for natural images




CS and BED: how to optimize

How to make these optimizations:
e let f be the signal of interest, fn the reconstruction

e let y be the measurements, X the measurement matrix

e We seek p(fn]y)

p(fnly) o< p(ylfn)p(fn) = Ny = XfIX fn, 0" Dp(fn)

e p(fn) encodes structural information about the signal:
sparsity, smoothness, etc

—Generalizes the 1 minimization of CS

o N(y = Xf|Xfn,0?I) is the likelihood

—Generalizes the y = X fy constraint




CS and BED: how to choose next measurement

How to choose the next measurement y, = X, f”
Maximize entropy decrease (or information gain):

min Hp(fn|y)| — H{p(fNn]y,y+))

Y *

However, p(fn|y) intractable; approximate using Ezpectation Propagation

Q(fn) = p(fnly)

EP provides us with the following equation for the entropy difference:

HIQ(X)] ~ HIQ(X x.]7)] = 5 log(1 + 0~ *x7 Covgpx (f)x.)

We thus choose x, along the principal eigendirection of Covgx)(f)




CS and BED: how to encode constraints

For images, we have two types of constraints on p(fx)

e Sparsity (wavelet): B(sP) ¢ Rn*"
is a wavelet transform

e Spatial Smoothness: B{*P) ¢ R2(n—vn)xn
is an image gradient transform

We turn these constraints into a distribution by using exponentials:

p(fn) o eXp(_TSpHB(Sp)fNWl) ' eXp(_TthB(tv)fNHEl)
q2

= Hexp(—TSp\(B(Sp)fN)z’\) H eXP(—Ttv\(B(w)fN)jD

1=1 1=g1

The exponentials favor coefficients near zero, thus enforcing sparsity in both
domains




CS and BED: synthetic experimental results
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c) Student's t d) Decaying Figure 1. Comparison on 6 random synthetic signals u €
MMt Maussses sesaseues asaegeeny R°!2, Shown are La-reconstruction errors (mean4std.dev.
;  —#—SBL (rand) | over 100 runs). All methods start with same random initial
T SBL (opt) X (m = 40), then “(rand)” add random rows, “(opt)” op-
: : : timise new rows sequentially. Noise variance o2 = 0.005,
prior scale 7 = 5. SBL: (Ji & Carin, 2007), Lp: L, re-
construction, EP: our method. (a-c): i.i.d. zero mean, unit
variance Gaussian, Laplacian (Eq. 2), Student’s ¢ (3 d.o.f.).
(d): § of u; = 0, 3 exponential decay 1,...,0, 7 minus
that, randomly permuted. (e-f): 20 u; # 0 at random;
(e) uniform spikes, u; € {£1}; (f): non-uniform spikes,
u; ~ 5+ [t|, t ~ N(0,1); as in (Ji & Carin, 2007). Distri-
f) Random sparse butions in (d-f) normalised to unit variance.

:
§
5
:

75 100 125

What CS is made for

Number of measurements




CS and BED: image experimental results

a) 100 random initial measuraments

b) 100 initial Wavelet measurements
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d) 400 initial Wavelet measuraments

-=-L} (mnd)

Figure 2. Experiments for measuring natural images (64 x
64 = 4096 pixels). Shown are La2-reconstruction errors av-
eraged over 25 grayscale images typically used in computer
vision research (from decsai.ugr.es/cvg/dbimagenes/)
(£1std.dev. for “+”). Noise level o2 = 0.005. SBL: (Ji &
Carin, 2007), Lp: L, reconstruction, Ly + TV: Lasso with
TV /wavelet penalties, EP: our method. True o? supplied,
7 parameters chosen optimally for each method individu-
ally: 7ap = 70 = 0.075 (L1 + TV), 75p = 0.075, 74, = 0.5
(EP). New rows of X random unit norm (rand), actively
designed (opt), acc. to wavelet heuristic (heur).

(a): Start with m» = 100, X random unit norm. (b-d):
Start with m = 100, 200, 400, X acc. to wavelet heuristic.




CS and BED: discussion

® Sequential Design outperforms CS
protocols

® However, measurement matrix of CS
known in advance => much faster

® BED encompasses CS

® Much can be gained from the BED
framework

® enables encoding of many types of
structural information

® Optimizes information capture




