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Sensing by sampling:

   f(x)

Pixel basis

f(x) ≈ fN (x) =
N∑

i=1

f(xi)δ(x− xi)

Wavelet basis

−→ f̂ =
K∑

i=1

< fN , ψi > ψi =
K∑

i=1

ciψi

  fN (x)



Introduction to Compressive Sensing

Begs the following:  Can we measure the “compressive”
measurement set directly?

A: yes.

Original image fN (x) Wavelet coefficients ci Image reconstruction: 
threshold all but 

25000 largest 
coefficients



• Traditional (Nyquist) sampling is highly pessimistic

• Doesn’t consider any structure of signal 

• Compressive sensing is optimistic

• leverages compressibility

• => only need K<<N measurements to 
reconstruct an N-dim signal

• Intuition: 

• CS encodes sparsity as information

• Allows for tradeoff between sparsity and # of 
measurements 

Introduction to Compressive Sensing



Compressive Sensing:

   f(x)

  fN (x)



Compressive Sensing:

   f(x)

  fN (x)









Sequential CS algorithm (segue)

Given seed measurement matrix X =⇒ y = Xf

1. Choose new row x! randomly

2. Form: X′ = [X x!]T

3. Measure: y′ = X′f

4. Reconstruct: ĉ = arg minc{||c||"1 |y′ = X′ΨT c},
where fN =

∑N
i=1 ĉiψi

5. Repeat, starting with X′

Goal of “CS and Bayesian Experimental Design”:
Improve Sequential CS by

• Optimizing step (1) above for general distributions

• Optimizing step (4) above for natural images



CS and BED: how to optimize

p(fN |y) ∝ p(y|fN )p(fN ) ≈ N (y = Xf |XfN , σ2I)p(fN )

• p(fN ) encodes structural information about the signal:
sparsity, smoothness, etc

—Generalizes the "1 minimization of CS

• N (y = Xf |XfN , σ2I) is the likelihood
—Generalizes the y = XfN constraint

How to make these optimizations:

• let f be the signal of interest, fN the reconstruction

• let y be the measurements, X the measurement matrix

• We seek p(fN |y)



CS and BED: how to choose next measurement

We thus choose x∗ along the principal eigendirection of CovQ(x)(f)

EP provides us with the following equation for the entropy difference:

H[Q(X)]−H[Q([X x∗]T )] =
1
2

log(1 + σ−2xT
∗ CovQ(X)(f)x∗)

However, p(fN |y) intractable; approximate using Expectation Propagation

Q(fN ) ≈ p(fN |y)

How to choose the next measurement y∗ = x∗f?
Maximize entropy decrease (or information gain):

min
y∗

H[p(fN |y)]−H[p(fN |y,y∗)]



CS and BED: how to encode constraints

We turn these constraints into a distribution by using exponentials:

p(fN ) ∝ exp(−τsp||B(sp)fN ||!1) · exp(−τtv||B(tv)fN ||!1)

=
q1∏

i=1

exp(−τsp|(B(sp)fN )i|)
q2∏

j=g1

exp(−τtv|(B(tv)fN )j |)

For images, we have two types of constraints on p(fN )

• Sparsity (wavelet): B(sp) ∈ Rn×n

is a wavelet transform

• Spatial Smoothness: B(sp) ∈ R2(n−
√

n)×n

is an image gradient transform

The exponentials favor coefficients near zero, thus enforcing sparsity in both
domains



CS and BED: synthetic experimental results
Title = type of signal

What CS is made for



CS and BED:  image experimental results



• Sequential Design outperforms CS 
protocols

• However, measurement matrix of CS 
known in advance => much faster

• BED encompasses CS

• Much can be gained from the BED 
framework 

• enables encoding of many types of 
structural information

• Optimizes information capture

CS and BED:  discussion


