Gittins Policy on NBUE + DHR(k) Job Sizes

Matthew Maurer

Performance Modeling, 2009

Outline

(1) Gittins Policy

- Gittins Index
- Gittins Policy Application
(2) NBUE $+\operatorname{DHR}(k)$ Distributions
- Gittins Reduction to FCFS $+\mathrm{FB}(\theta)$
- Gittins Index Properties
- Policy Properties
- Pareto Example

Outline

(1) Gittins Policy

- Gittins Index
- Gittins Policy Application
(2) NBUE $+\mathrm{DHR}(k)$ Distributions
- Gittins Reduction to FCFS + FB (θ)
- Gittins Index Properties
- Policy Properties
- Pareto Example

Gittins Index Motivation

- K-Armed Bandit Problem
- Optimal Blind Scheduling

Gittins Index Motivation

- K-Armed Bandit Problem
- Optimal Blind Scheduling

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Maximal Ratio of Payoff to Investment

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Maximal Ratio of Payoff to Investment

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Doesn't make sense - Payoff and Investment are not necessarily in the same units
- Maximal Ratio of Payoff to Investment

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Doesn't make sense - Payoff and Investment are not necessarily in the same units
- Maximal Ratio of Payoff to Investment

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Doesn't make sense - Payoff and Investment are not necessarily in the same units
- ?
- Maximal Ratio of Payoff to Investment

Gittins Index Candidates

- Payoff?
- Costs not accounted for
- Payoff - Investment?
- Doesn't make sense - Payoff and Investment are not necessarily in the same units
- ?
- Maximal Ratio of Payoff to Investment

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } T T]}{E\left[T_{\text {Completion }} T\right]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} F(a+t)}$
- $G(a)=\sup _{T \geq 0} J(a, t)$

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } \mid T]}{E[T \text { Completion } T]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} F(a+t)}$
- $G(a)=\sup _{T \geq 0} J(a, t)$

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } \mid T]}{E\left[T_{\text {Completion }} T\right]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} \bar{F}(a+t)}$
- $G(a)=\sup _{T>0} J(a, t)$

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } T T]}{E\left[T_{\text {Completion }} T\right]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} F(a+t)}$
- $G(a)=\sup _{T \geq 0} J(a, t)$

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } \mid T]}{E\left[T_{\text {Completion }} T\right]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} \bar{F}(a+t)}$

Scheduling View of Gittins Index

- We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota
- We can think of varying T as varying the investment.
- $J(a, T)=\frac{E[\text { Job Completes } \mid T]}{E\left[T_{\text {Completion }} T\right]}=\frac{\int_{0}^{T} f(a+t) d t}{\int_{0}^{T} \bar{F}(a+t)}$
- $G(a)=\sup _{T \geq 0} J(a, t)$

Outline

(1) Gittins Policy

- Gittins Index
- Gittins Policy Application
(2) NBUE $+\operatorname{DHR}(k)$ Distributions
- Gittins Reduction to FCFS + FB (θ)
- Gittins Index Properties
- Policy Properties
- Pareto Example

Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not
- Optimal!

Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not

Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not
- Optimal!

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T. - We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T)$ w/rspt to T.
- Approximation
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- We can approximate $J(a, T)$ easily
- Optimiztion of a computationally expensive function over the real line...
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- We can approximate $J(a, T)$ easily
- Optimiztion of a computationally expensive function over the real line...
- This alaorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- We can approximate $J(a, T)$ easily
- Optimiztion of a computationally expensive function over the real line...
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Index Computation

- Exact
- To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
- We need to take the analytic minimum of $J(a, T) \mathrm{w} / \mathrm{rspt}$ to T.
- Approximation
- We can approximate $J(a, T)$ easily
- Optimiztion of a computationally expensive function over the real line...
- This algorithm was initially developed for discrete time cases, and it shows.

Gittins Policy Usage

- Generalized Blind Approximztion - Impractical
- Specific Distributions - Analytic Simplification

Gittins Policy Usage

- Generalized Blind Approximztion - Impractical
- Specific Distributions - Analytic Simplification

Outline

(1) Gittins Policy

- Gittins Index
- Gittins Policy Application
(2) NBUE $+\operatorname{DHR}(k)$ Distributions
- Gittins Reduction to FCFS + FB (θ)
- Gittins Index Properties
- Policy Properties
- Pareto Example

Problem Statement

- Blind
- Distribution Head NBUE
- Distribution Tail DHR after k

Problem Statement

- Blind
- Distribution Head NBUE
- Distribution Tail DHR after k

Problem Statement

- Blind
- Distribution Head NBUE
- Distribution Tail DHR after k

Derivative Calculation

- To optimize J, we calculate its derivative
- $\frac{\delta J}{\delta T}=\frac{f(a+T) \int_{0}^{T} \bar{F}(a+t) d t+\bar{F}(a+T) \int_{0}^{T} f(a+t) d t}{\int_{0}^{T} F(a+t) d t}$
- If we let h represent the hazard rate of the distribution, we have $\frac{\delta J}{\delta T}=\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}$

Derivative Calculation

- To optimize J, we calculate its derivative
- $\frac{\delta J}{\delta T}=\frac{f(a+T) \int_{0}^{T} \bar{F}(a+t) d t+\bar{F}(a+T) \int_{0}^{T} f(a+t) d t}{\int_{0}^{T} \bar{F}(a+t) d t}$
- If we let h represent the hazard rate of the distribution, we have $\frac{\delta J}{\delta T}=\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}$

Derivative Calculation

- To optimize J, we calculate its derivative
- $\frac{\delta J}{\delta T}=\frac{f(a+T) \int_{0}^{T} \bar{F}(a+t) d t+\bar{F}(a+T) \int_{0}^{T} f(a+t) d t}{\int_{0}^{T} \bar{F}(a+t) d t}$
- If we let h represent the hazard rate of the distribution, we have $\frac{\delta J}{\delta T}=\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}$

Lemmas

- We introduce the notation T_{a} to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance

Lemmas

- We introduce the notation T_{a} to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance

Lemmas

- We introduce the notation T_{a} to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance
- $\forall a, x: a \leq x<a+T_{a}, G(a) \leq G(x)$

Lemmas

- We introduce the notation T_{a} to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance
- $\forall a, x: a \leq x<a+T_{a}, G(a) \leq G(x)$
- $\forall a: T_{a}<\infty, G\left(a+T_{a}\right) \leq G(a)$

Proof Overview

- $T_{0} \geq k$
- $\forall a: a<T_{0}, G(a) \geq G(0)$
- $\forall a: a>k, G(a)$ is decreasing
- $\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right)>G(0)$

Proof Overview

- $T_{0} \geq k$
- $\forall a: a<T_{0}, G(a) \geq G(0)$
- $\forall a: a>k, G(a)$ is decreasing - $\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \geq G(0)$

Proof Overview

- $T_{0} \geq k$
- $\forall a: a<T_{0}, G(a) \geq G(0)$
- $\forall a: a>k, G(a)$ is decreasing
- $\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \geq G(0)$

Proof Overview

- $T_{0} \geq k$
- $\forall a: a<T_{0}, G(a) \geq G(0)$
- $\forall a: a>k, G(a)$ is decreasing
- $\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \geq G(0)$

Property I

- Take some x : $0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F(x)}{\int_{x}^{x} F(t) d t} \geq \frac{1}{\int_{0}^{\infty} F(t) d t}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} F \overline{F(t) d t}} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some $x: 0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$

- Running math, we get $\frac{1}{\int_{0}^{\infty} F(t) d t} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some x : $0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F^{-}(x)}{\int_{x}^{\infty} F(t) d t} \geq \frac{1}{\int_{0}^{\infty} F^{(t)} d t}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} F(t) d t} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some x : $0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F^{\overline{(} x)}}{\int_{x}^{\infty} F \overline{(t)} d t} \geq \frac{1}{\int_{0}^{\infty} F_{\overline{(})} d t}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} F(t) d t} \geq \frac{F(x)}{\int_{0}^{x} F(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some x : $0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F \overline{(x)}}{\int_{x}^{\infty} F \overline{(t)} d t} \geq \frac{1}{\int_{0}^{\infty} F \overline{(t)} d t}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} \overline{F(t) d t}} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some x : $0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F \overline{(x)}}{\int_{x}^{\infty} F \overline{(t) d t}} \geq \frac{1}{\int_{0}^{\infty} F \overline{(\bar{x}) d t}}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} \overline{F(t) d t}} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property I

- Take some $x: 0<x<k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to $J, J(x, \infty) \geq J(0, \infty)$
- $\frac{F \overline{(x)}}{\int_{x}^{\infty} F \overline{(t) d t}} \geq \frac{1}{\int_{0}^{\infty} F \overline{(\bar{x}) d t}}$
- Running math, we get $\frac{1}{\int_{0}^{\infty} \overline{F(t) d t}} \geq \frac{F(x)}{\int_{0}^{x} \bar{F}(t) d t}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_{0} \geq k$

Property II

See the first lemma. The proof is omitted as it is a sufficiently general result.

Property III

- Setting our derivative to zero, we get the equation $\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}=0$
- Excluding infinite T, the \bar{F} term will not zero, so we have $h(a+T)=J(a, T)$
- For $a \geq k$, we have the DHR property, so $G(a)=J(a, 0)=h(a)$
- We have the DHR property, so $G(a)$ is decreasing for $a \geq k$.

Property III

- Setting our derivative to zero, we get the equation

$$
\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}=0
$$

- Excluding infinite T, the \bar{F} term will not zero, so we have $h(a+T)=J(a, T)$
- For $a \geq k$, we have the DHR property, so $G(a)=J(a, 0)=h(a)$ - We have the DHR property, so $G(a)$ is decreasing for $a \geq k$.

Property III

- Setting our derivative to zero, we get the equation

$$
\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}=0
$$

- Excluding infinite T, the \bar{F} term will not zero, so we have $h(a+T)=J(a, T)$
- For $a \geq k$, we have the DHR property, so $G(a)=J(a, 0)=h(a)$

Property III

- Setting our derivative to zero, we get the equation

$$
\frac{\bar{F}(a+T)(h(a+T)-J(a, T))}{\int_{0}^{T} \bar{F}(a+t) d t}=0
$$

- Excluding infinite T, the \bar{F} term will not zero, so we have $h(a+T)=J(a, T)$
- For $a \geq k$, we have the DHR property, so $G(a)=J(a, 0)=h(a)$
- We have the DHR property, so $G(a)$ is decreasing for $a \geq k$.

Property IV

See the second lemma. The proof is omitted as it is a sufficiently general result.

Policy Derivation

- We have $\forall a: a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- $\mathrm{FCFS}+\mathrm{FB}\left(T_{0}\right)$
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a: a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a$: $a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- $\mathrm{FCFS}+\mathrm{FB}\left(T_{0}\right)$
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a: a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- FCFS + FB(T_{0})
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a$: $a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- $\mathrm{FCFS}+\mathrm{FB}\left(T_{0}\right)$
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a$: $a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- FCFS + FB (T_{0})
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a$: $a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- $\mathrm{FCFS}+\mathrm{FB}\left(T_{0}\right)$
- Additionally, we have the bound $T_{0}>k$

Policy Derivation

- We have $\forall a$: $a<T_{0}, G(a) \geq G(0)$ and
$\forall T_{0}: T_{0}<\infty, G\left(T_{0}\right) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a: a>k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- $\mathrm{FCFS}+\mathrm{FB}\left(T_{0}\right)$
- Additionally, we have the bound $T_{0}>k$

Outline

(1) Gittins Policy

- Gittins Index
- Gittins Policy Application
(2) NBUE $+\operatorname{DHR}(k)$ Distributions
- Gittins Reduction to FCFS + FB(θ)
- Gittins Index Properties
- Policy Properties
- Pareto Example

Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins

Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins

Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins

Gittins Index

Summary

- When doing blind scheduling, Gittins Policy is optimal.
- The Gittins Policy is usually intractible.
- In our particular case Gittins reduces to FCFS + FB(T_{0}) for NBUE + DHR(k).

Summary

- When doing blind scheduling, Gittins Policy is optimal.
- The Gittins Policy is usually intractible.
- In our particular case Gittins reduces to FCFS + FB(T_{0}) for NBUE + DHR(k).

Summary

- When doing blind scheduling, Gittins Policy is optimal.
- The Gittins Policy is usually intractible.
- In our particular case Gittins reduces to FCFS + FB $\left(T_{0}\right)$ for NBUE + DHR(k).

For Further Reading

Q M. Pinedo.
Scheduling: Theory, Algorithms and Systems.
Springer, 2008.
Q S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the M/G/1 queue. ValueTools, 2008.
J. Gittins.

Bandit Processes and Dynamic Allocation Indices.
Royal Statistical Society, 2:148-177, 1979.

For Further Reading

© M. Pinedo.
Scheduling: Theory, Algorithms and Systems.
Springer, 2008.
S S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the M/G/1 queue. ValueTools, 2008.
J. Gittins.
Bandit Processes and Dynamic Allocation Indices.

Royal Statistical Society, 2:148-177, 1979.

For Further Reading

© M. Pinedo.
Scheduling: Theory, Algorithms and Systems.
Springer, 2008.
B S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the $\mathrm{M} / \mathrm{G} / 1$ queue. ValueTools, 2008.
© J. Gittins.
Bandit Processes and Dynamic Allocation Indices.
Royal Statistical Society, 2:148-177, 1979.

