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Gittins Index Motivation

K-Armed Bandit Problem
Optimal Blind Scheduling
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Gittins Index Candidates

Payoff?
I Costs not accounted for

Payoff - Investment?
I Doesn’t make sense – Payoff and Investment are not necessarily in

the same units

?
Maximal Ratio of Payoff to Investment
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Scheduling View of Gittins Index

We parameterize the Gittins Index over
I a, the current age of the job
I T , the service quota

We can think of varying T as varying the investment.

J(a,T ) = E [Job Completes|T ]
E [TCompletion|T ] =

R T
0 f (a+t)dtR T
0 F̄ (a+t)

G(a) = supT≥0 J(a, t)
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Gittins Policy Motivation

We are usually blind
We usually know the distribution, and can approximate it well after
some startup time if not
Optimal!
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Gittins Index Computation

Exact
I To compute G(a) exactly, we have to compute J(a,T ) for some T .
I We need to take the analytic minimum of J(a,T ) w/rspt to T .

Approximation
I We can approximate J(a,T ) easily
I Optimiztion of a computationally expensive function over the real

line...

This algorithm was initially developed for discrete time cases, and
it shows.
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Gittins Policy Usage

Generalized Blind Approximztion - Impractical
Specific Distributions - Analytic Simplification
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Problem Statement

Blind
Distribution Head NBUE
Distribution Tail DHR after k
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Derivative Calculation

To optimize J, we calculate its derivative
δJ
δT =

f (a+T )
R T

0 F̄ (a+t)dt+F̄ (a+T )
R T

0 f (a+t)dtR T
0 F̄ (a+t)dt

If we let h represent the hazard rate of the distribution, we have
δJ
δT = F̄ (a+T )(h(a+T )−J(a,T ))R T

0 F̄ (a+t)dt
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Lemmas

We introduce the notation Ta to represent the optimal T choice for
a job of age a
We omit the proofs for these Lemmas for time and relevance

I ∀a, x : a ≤ x < a + Ta,G(a) ≤ G(x)
I ∀a : Ta <∞,G(a + Ta) ≤ G(a)
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Proof Overview

T0 ≥ k
∀a : a < T0,G(a) ≥ G(0)

∀a : a > k ,G(a) is decreasing
∀T0 : T0 <∞,G(T0) ≥ G(0)
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Property I

Take some x : 0 < x < k
As it has a NBUE head, H(x) ≥ H(0)

Converting to J, J(x ,∞) ≥ J(0,∞)
¯F (x)R∞

x
¯F (t)dt
≥ 1R∞

0
¯F (t)dt

Running math, we get 1R∞
0

¯F (t)dt
≥ F (x)R x

0 F̄ (t)dt

Back in index form, this gives G(0) ≥ J(0, x)

As x is valid from 0 to k , we have T0 ≥ k
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Property II

See the first lemma. The proof is omitted as it is a sufficiently general
result.
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Property III

Setting our derivative to zero, we get the equation
F̄ (a+T )(h(a+T )−J(a,T ))R T

0 F̄ (a+t)dt
= 0

Excluding infinite T , the F̄ term will not zero, so we have
h(a + T ) = J(a,T )

For a ≥ k , we have the DHR property, so G(a) = J(a,0) = h(a)

We have the DHR property, so G(a) is decreasing for a ≥ k .
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Property IV

See the second lemma. The proof is omitted as it is a sufficiently
general result.
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Policy Derivation

We have ∀a : a < T0,G(a) ≥ G(0) and
∀T0 : T0 <∞,G(T0) ≤ G(0)

So, the Gittins Index passes its starting position at some point.
We have ∀a : a > k ,G(a) is decreasing
So, the Gittins Index keeps going down after that.
As we start NBUE, and end with this property, by optimality of
Gittins
FCFS + FB(T0)

Additionally, we have the bound T0 > k
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Qualification

Up through k , NBUE (starts at zero, then jumps)
After k , DHR
Fits the requirements for this application of Gittins
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Gittins Index
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Summary

When doing blind scheduling, Gittins Policy is optimal.
The Gittins Policy is usually intractible.
In our particular case Gittins reduces to FCFS + FB(T0) for
NBUE + DHR(k).
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For Further Reading

M. Pinedo.
Scheduling: Theory, Algorithms and Systems.
Springer, 2008.

S. Aalto, U. Ayesta.
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