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Announcements
Homework 2: Due Thursday Feb 19

Project milestone due: Feb 24

4 Pages, NIPS format:

http://nips.cc/PaperInformation/StyleFiles

Should contain preliminary results (model, experiments, 

proofs, …) as well as timeline for remaining work

Come to office hours to discuss projects!

Office hours

Come to office hours before your presentation!

Andreas: Monday 3pm-4:30pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches
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Medical diagnosis
Want to predict medical condition of patient given 
noisy symptoms / tests

Body temperature

Rash on skin

Cough

Increased antibodies 
in blood

Abnormal MRI

Treating a healthy patient is bad, 
not treating a sick patient is terrible

Each test has a (potentially different) cost

Which tests should we perform to make most 
effective decisions?

-$$$0No treatment

$-$$Treatment

sickhealthy
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Value of information

Value of information:

Reward[ P(Y | xi) ] = maxa EU(a | xi)

Reward can by any function of the distribution P(Y | xi)

Important examples: 

Posterior variance of Y

Posterior entropy of Y

Prior P(Y) Posterior P(Y | xi)obs Xi = xi Reward
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Optimal value of information
Can we efficiently optimize value of information?

� Answer depends on properties of the 
distribution P(X1,…,Xn,Y)

Theorem [Krause & Guestrin IJCAI ’05]:

If the random variables form a Markov Chain, can find 
optimal (exponentially large!) decision tree in 
polynomial time ☺

There exists a class of distributions for which we can 
perform efficient inference (i.e., compute P(Y|Xi)), 
where finding the optimal decision tree is NPPP hard
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Approximating value of information?
If we can’t find an optimal solution, can we find 

provably near-optimal approximations??
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Feature selection
Given random variables Y, X1, … Xn

Want to predict Y from subset XA = (Xi1
,…,Xik

)

Want k most informative features:

A* = argmax IG(XA; Y) s.t. |A| ≤ k

where IG(XA; Y) = H(Y) - H(Y | XA)

Y

“Sick”

X1

“Fever”

X2

“Rash”

X3

“Male”

Naïve Bayes Model

Uncertainty

before knowing XA

Uncertainty

after knowing XA
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Example: Greedy algorithm for feature selection

Given: finite set V of features, utility function F(A) = IG(XA; Y)

Want:       A*⊆ V such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:

Start with A = ∅

For i = 1 to k

s* := argmaxs F(A ∪ {s})

A := A ∪ {s*}

Y
“Sick”

X1
“Fever”

X2
“Rash”

X3
“Male”
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s

Key property: Diminishing returns

Selection A = {} Selection B = {X2,X3}

Adding X1

will help a lot!
Adding X1

doesn’t help much
New 

feature X1

B      A

s

+

+

Large improvement

Small improvement

For A⊆ B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

Submodularity:

Y
“Sick”

X1
“Fever”

X2
“Rash”

X3
“Male”

Y
“Sick”

Theorem [Krause, Guestrin UAI ‘05]: Information gain F(A) in 

Naïve Bayes models is submodular! 
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Why is submodularity useful?

Theorem [Nemhauser et al ‘78]

Greedy maximization algorithm returns Agreedy:

F(Agreedy) ≥ (1-1/e) max|A|≤ k F(A)

Greedy algorithm gives near-optimal solution!

For info-gain: Guarantees best possible unless P = NP! 

[Krause, Guestrin UAI ’05]

Submodularity is an incredibly useful and powerful concept!

~63%
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Set functions
Finite set V = {1,2,…,n}

Function F: 2V → R

Will always assume F(∅) = 0 (w.l.o.g.)

Assume black-box that can evaluate F for any input A

Approximate (noisy) evaluation of F is ok

Example: F(A) = IG(XA; Y) = H(Y) – H(Y | XA)

= ∑y,xA
P(xA) [log P(y | xA) – log P(y)]

Y
“Sick”

X1

“Fever”
X2

“Rash”

F({X1,X2}) = 0.9

Y
“Sick”

X2

“Rash”
X3

“Male”

F({X2,X3}) = 0.5
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Submodular set functions
Set function F on V is called submodular if

For all A,B ⊆ V: F(A)+F(B) ≥ F(A∪B)+F(A�B)

Equivalent diminishing returns characterization: 

SB      A

S

+

+

Large improvement

Small improvement

For A⊆B, s∉B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

Submodularity:

BA A ∪ B

A�B

++ ≥
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Submodularity and supermodularity

Set function F on V is called submodular if

1) For all A,B ⊆ V: F(A)+F(B) ≥ F(A∪B)+F(A�B)

� 2) For all A⊆B, s∉B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

F is called supermodular if –F is submodular

F is called modular if F is both sub- and supermodular

for modular (“additive”) F, F(A) = ∑i∈A w(i)
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Example: Set cover

Node predicts

values of positions

with some radius

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

For A ⊆ V: F(A) = “area 

covered by sensors placed at A”

Formally: 

W finite set, collection of n subsets Si ⊆W

For A ⊆ V={1,…,n} define F(A) = |Ui∈ A Si|

Want to cover floorplan with discsPlace sensors
in building Possible

locations 
V
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Set cover is submodular

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

S1 S2

S1 S2

S3

S4 S’

S’

A={S1,S2}

B = {S1,S2,S3,S4}

F(A∪{S’})-F(A)

F(B∪{S’})-F(B)

≥
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Example: Mutual information
Given random variables X1,…,Xn

F(A) = I(XA; XV\A) = H(XV\A) – H(XV\A |XA)

Lemma: Mutual information F(A) is submodular

F(A ∪ {s}) – F(A) = H(Xs| XA) – H(Xs| XV\(A∪{s}) )

δs(A) = F(A∪{s})-F(A) monotonically nonincreasing

� F submodular ☺
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Example: Influence in social networks
[Kempe, Kleinberg, Tardos KDD ’03]

Who should get free cell phones?
V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Prob. of

influencing
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Influence in social networks is submodular
[Kempe, Kleinberg, Tardos KDD ’03]

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Key idea: Flip coins c in advance � “live” edges

Fc(A) = People influenced under outcome c (set cover!)

F(A) = ∑c P(c) Fc(A) is submodular as well!
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Closedness properties
F1,…,Fm submodular functions on V and λ1,…,λm > 0

Then: F(A) = ∑i λi Fi(A) is submodular!

Submodularity closed under nonnegative linear 

combinations!

Extremely useful fact!!

Fθ(A) submodular ⇒ ∑θ P(θ) Fθ(A) submodular!

Multicriterion optimization: 

F1,…,Fm submodular, λi≥0 ⇒ ∑i λi Fi(A) submodular
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Submodularity and Concavity
Suppose g: N → R and F(A) = g(|A|)

Then F(A) submodular if and only if g concave!

E.g., g could say “buying in bulk is cheaper”

|A|

g(|A|)
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Maximum of submodular functions

Suppose F1(A) and F2(A) submodular.

Is F(A) = max(F1(A),F2(A)) submodular?

|A|

F2(A)

F1(A)

F(A) = max(F1(A),F2(A))

max(F1,F2) not submodular in general!
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Minimum of submodular functions

Well, maybe F(A) = min(F1(A),F2(A)) instead?

111{a,b}

010{b}

001{a}

000∅

F(A)F2(A)F1(A)
F({b}) – F(∅)=0

F({a,b}) – F({a})=1

<

But stay tuned – we’ll address mini Fi later!

min(F1,F2) not submodular in general!
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Maximizing submodular functions

Minimizing convex functions:

Polynomial time solvable!

Minimizing  submodular functions:

Polynomial time solvable!

Maximizing convex functions:

NP hard!
Maximizing  submodular functions:

NP hard!

But can get  

approximation 

guarantees ☺
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Maximizing influence
[Kempe, Kleinberg, Tardos KDD ’03]

F(A) = Expected #people influenced when targeting A

F monotonic: If A ⊆ B: F(A) ≤ F(B) 
Hence V = argmaxA F(A)

More interesting: argmaxA F(A) – Cost(A)

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Eric

Fiona

Dorothy
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Maximizing non-monotonic functions

Suppose we want for not monotonic F

A* = argmax F(A)  s.t.  A⊆ V

Example:

F(A) = U(A) – C(A) where U(A) is submodular utility, 

and C(A) is supermodular cost function

In general: NP hard. Moreover:

If F(A) can take negative values:

As hard to approximate as maximum independent set 

(i.e., NP hard to get O(n1-ε) approximation)

|A|

maximum
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak FOCS ’07]

picking a random set gives ¼ approximation 

(½ approximation if F is symmetric!)

we cannot get better than ¾ approximation unless P = NP

Theorem

There is an efficient randomized local search procedure,

that, given a positive submodular function F, F(∅)=0, 

returns set ALS such that 

F(ALS) ≥ (2/5) maxA F(A)
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Scalarization vs. constrained maximization

Given monotonic utility F(A) and cost C(A), optimize:

Option 1: 

maxA F(A) – C(A)

s.t. A ⊆ V

Option 2:

maxA F(A)

s.t. C(A) ≤ B

Can get 2/5 approx…

if F(A)-C(A) ≥ 0 
for all A ⊆ V

coming up…

Positiveness is a 

strong requirement �

“Scalarization” “Constrained maximization”
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected setMonotonic submodular

BudgetSelection cost

Subset selection: C(A) = |A|



30

Monotonicity
A set function is called monotonic if

A ⊆ B ⊆V ⇒ F(A) ≤ F(B)

Examples:

Influence in social networks [Kempe et al KDD ’03]

For discrete RVs, entropy F(A) = H(XA) is monotonic:

Suppose B=A ∪ C. Then 

F(B) = H(XA, XC) = H(XA) + H(XC | XA) ≥ H(XA) = F(A)

Information gain: F(A) = H(Y)-H(Y | XA)

Set cover

Matroid rank functions (dimension of vector spaces, …)

…



31

Subset selection

Given:      Finite set V, monotonic submodular function F, F(∅) = 0 

Want:       A*⊆ V such that

NP-hard!
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Exact maximization of monotonic submodular functions

1) Mixed integer programming  [Nemhauser et al ’81]

2) Branch-and-bound: “Data-correcting algorithm”

[Goldengorin et al ’99]

max η
s.t. η ≤ F(B) + ∑s∈V\B αs δs(B) for all B ⊆ S

∑s αs ≤ k
αs ∈ {0,1}

where δs(B) = F(B ∪ {s}) – F(B)

Solved using constraint generation

Both algorithms worst-case exponential!
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Approximate maximization

Given: finite set V, monotonic submodular function F(A) 

Want:       A*⊆ V such that

NP-hard!

Greedy algorithm:

Start with A0 = ∅

For i = 1 to k

si := argmaxs F(Ai-1 ∪ {s}) - F(Ai-1)

Ai := Ai-1 ∪ {si}

Y

“Sick”

X1

“Fever”

X2

“Rash”

X3

“Male”
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Performance of greedy algorithm

Theorem [Nemhauser et al ‘78]

Given a monotonic submodular function F, F(∅)=0, the 

greedy maximization algorithm returns Agreedy

F(Agreedy) ≥ (1-1/e) max|A|· k F(A)

~63%

Sidenote: Greedy algorithm gives 
1/2 approximation for 
maximization over any matroid C! 
[Fisher et al ’78]
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Example: Submodularity of info-gain

Y1,…,Ym, X1, …, Xn discrete RVs

F(A) = IG(Y; XA) = H(Y)-H(Y | XA)

F(A) is always monotonic

However, NOT always submodular

Theorem [Krause & Guestrin UAI’ 05]

If Xi are all conditionally independent given Y,

then F(A) is submodular!

Y
1

X
1

Y
2

X
2

Y
3

X
4

X
3

Hence, greedy algorithm works!

In fact, NO algorithm can do better 

than (1-1/e) approximation!
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People sit a lot

Activity recognition in

assistive technologies

Seating pressure as 

user interface

Equipped with 

1 sensor per cm2!

Costs $16,000! �

Can we get similar 

accuracy with fewer, 

cheaper sensors?

Lean

forward

SlouchLean

left

82% accuracy on               

10 postures! [Tan et al]

Building a Sensing Chair 
[Mutlu, Krause, Forlizzi, Guestrin, Hodgins UIST ‘07]
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How to place sensors on a chair?

Sensor readings at locations V as random variables

Predict posture Y using probabilistic model P(Y,V)

Pick sensor locations A* ⊆ V to minimize entropy:

Possible locations V

$100 ☺☺☺☺79%After

$16,000 ����82%Before

CostAccuracy

Placed sensors, did a user study:

Similar accuracy at <1% of the cost!
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Variance reduction 
(a.k.a. Orthogonal matching pursuit, Forward Regression)

Let Y = ∑i αi Xi+ε, and (X1,…,Xn,ε) ∼ N(·; µ,Σ)

Want to pick subset XA to predict Y

Var(Y | XA=xA): conditional variance of Y given XA = xA

Expected variance:     Var(Y | XA) = ∫ p(xA) Var(Y | XA=xA) dxA

Variance reduction:    FV(A) = Var(Y) – Var(Y | XA)

FV(A) is always monotonic

Theorem [Das & Kempe, STOC ’08]

FV(A) is submodular*
*under some 

conditions on Σ

���� Orthogonal matching pursuit near optimal!

[see other analyses by Tropp, Donoho et al., and Temlyakov]
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Monitoring water networks
[Krause et al, J Wat Res Mgt 2008]

Contamination of drinking water

could affect millions of people

Contamination

Place sensors to detect contaminations

“Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?

Sensors

Simulator from EPA Hach Sensor

~$14K
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Model-based sensing

Utility of placing sensors based on model of the world

For water networks: Water flow simulator from EPA

F(A)=Expected impact reduction placing sensors at A

S2

S3

S4
S1 S2

S3

S4

S1

High impact reduction F(A) = 0.9 Low impact reduction F(A)=0.01

Model predicts

High impact

Medium impact

location

Low impact

location

Sensor reduces

impact through

early detection!

S1

Contamination

Set V of all 

network junctions

Theorem [Krause et al., J Wat Res Mgt ’08]:

Impact reduction F(A) in water networks is submodular! 
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Battle of the Water Sensor Networks Competition

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: 

Detection time, affected population, …

Place sensors that detect well “on average”
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Bounds on optimal solution
[Krause et al., J Wat Res Mgt ’08]

(1-1/e) bound quite loose… can we get better bounds?

P
o

p
u

la
ti

o
n

 p
ro

te
ct

e
d
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(A

)

H
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h
e

r 
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e

tt
e

r

Water 

networks

data

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Offline 

(Nemhauser)

bound

Greedy

solution

Number of sensors placed
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Data dependent bounds
[Minoux ’78]

Suppose A is candidate solution to

argmax F(A)  s.t. |A| ≤ k

and A* = {s1,…,sk} be an optimal solution

For each s ∈ V\A, let δs = F(A∪{s})-F(A)

Order such that δ1 ≥ δ2 ≥ …≥ δn

Then: F(A*) ≤ F(A) + ∑i=1
k δi
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Bounds on optimal solution
[Krause et al., J Wat Res Mgt ’08]

Submodularity gives data-dependent bounds on the 

performance of any algorithm

S
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BWSN Competition results 
[Ostfeld et al., J Wat Res Mgt 2008]

13 participants

Performance measured in 30 different criteria
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G: Genetic algorithm

H: Other heuristic

D: Domain knowledge

E: “Exact” method (MIP)

24% better performance than runner-up! ☺☺☺☺
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Simulated all                                           on 2 weeks / 40 processors

152 GB data on disk

� Very accurate computation of F(A)

16 GB in main memory (compressed)

L
o
w
e
r 
is
 b
e
tt
e
r

30 hours/20 sensors

6 weeks for all

30 settings ����

3.6M contaminations

Very slow evaluation of F(A) �

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of sensors selected

R
u

n
n

in
g

 t
im

e
 (

m
in

u
te

s)

Exhaustive search
(All subsets)

Naive
greedy

What was the trick?

ubmodularity

to the rescue
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Scaling up greedy algorithm
[Minoux ’78]

In round i+1, 

have picked Ai = {s1,…,si}

pick si+1 = argmaxs F(Ai ∪ {s})-F(Ai)

I.e., maximize “marginal benefit” δs(Ai)

δs(Ai) = F(Ai ∪ {s})-F(Ai)

Key observation: Submodularity implies 

i ≤ j ⇒ δs(Ai) ≥ δs(Aj)

Marginal benefits can never increase!

s

δδδδs(Ai) ≥ δδδδs(Ai+1)
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“Lazy” greedy algorithm
[Minoux ’78]

Lazy greedy algorithm:

� First iteration as usual

� Keep an ordered list of marginal 

benefits δδδδi from previous iteration

� Re-evaluate δδδδi only for top 

element

� If δi stays on top, use it,

otherwise re-sort

a

b

c

d

Benefit δs(A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, lazy evaluations, etc.

[Leskovec et al. ’07]
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Simulated all                                           on 2 weeks / 40 processors

152 GB data on disk

� Very accurate computation of F(A)

Using “lazy evaluations”:

1 hour/20 sensors

Done after 2 days! ☺☺☺☺

, 16 GB in main memory (compressed)

L
o
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e
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 b
e
tt
e
r

30 hours/20 sensors

6 weeks for all

30 settings ����

3.6M contaminations

Very slow evaluation of F(A) �
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Exhaustive search
(All subsets)

Naive
greedy

Fast greedy

ubmodularity

to the rescue:

Result of lazy evaluation
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What about worst-case?
[Krause et al., NIPS ’07]

S2

S3

S4
S1

Knowing the sensor locations, an 

adversary contaminates here! 

Where should we place sensors to quickly detect in the worst case?

Very different average-case impact,

Same worst-case impact

S2

S3

S4

S1

Placement detects 

well on “average-case”

(accidental) contamination


