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Announcements
Homework 2: Due Thursday Feb 19

Project milestone due: Feb 24

4 Pages, NIPS format:

http://nips.cc/PaperInformation/StyleFiles

Should contain preliminary results (model, experiments, 

proofs, …) as well as timeline for remaining work

Come to office hours to discuss projects!

Office hours

Come to office hours before your presentation!

Andreas: Monday 3pm-4:30pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Review of Active Learning
PAC Learning:

How many labeled examples do we need to get error ≤ ε

with probability 1-δ

Passive learning

n = O’(1/ε2(VC(H) + log 1/δ)) suffice

Bounds crucially depend on i.i.d. data

Active learning

Uncertainty sampling � Bias

Can avoid bias (and get fall-back guarantee) using 

pool-based active learning
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Algorithms for active learning
Generalized binary search: Shrink version space

(set of consistent hypotheses) as quickly as possible

Sample complexity depends both on H and PX

Splitting index

Disagreement coefficient

Can in some cases get exponential improvements 

in rate of error reduction: (log 1/ε)2 instead of 1/ε2  ☺☺☺☺
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Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches
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Medical diagnosis
Want to predict medical condition of patient given 
noisy symptoms / tests

Body temperature

Rash on skin

Cough

Increased antibodies 
in blood

Abnormal MRI

Treating a healthy patient is bad, 
not treating a sick patient is terrible

Each test has a (potentially different) cost

Which tests should we perform to make most 
effective decisions?

-$$$0No treatment

$-$$Treatment

sickhealthy
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General approach:
1. Model patients condition Y and outcomes of tests 

X1, …, Xn as random variables

2. Assign cost for 

“misdiagnosis” (predicting wrong value of Y)

Performing tests (learning value xi of some Xi)

3. Select tests to perform to minimize total cost

Let’s see how we can do this…
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Decision theory
Bernoulli random variable Y; Y=1 (sick) Y=0 (healthy)

Can perform two actions: A=1 (treat) or 0 (not treat)

Obtain utility U(a,y)

Don’t know y!

A priori probability P(Y=1) = p

Choose action to maximize expected utility

a* = argmaxa EU(a) =

10-10A=1

-1000A=0

Y=1Y=0U(a,y)
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Shape of expected utility
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Informed decision making
Observations help us make decisions

Model possible observations as random variables

X1, …, Xn

Observing Xi = xi allows us to perform inference:

P(Y=1 | Xi = xi) = 

Observation changes our expected utility (and action)

a* = argmaxa EU(a | xi) = p’ U(1,a) + (1-p’) U(0,a)
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Informed decision making
More generally, make multiple observations

X1 = x1, X4 = x4, …, X6 = x6

For index set B = {i1,…,ik} write XB = (Xi1
,…, Xik

)

Compute P(Y = 1 | XB = xB) = p’’

� a* = argmaxa EU(a | xB) = p’’ U(1,a) + (1-p’’) U(0,a)

Value of observing XB = xB:

maxa EU(a | xB) – maxa’ EU(a’)
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Value of information [Howard ’66]

Value of observing XB = xB:

Value(XB = xB) maxa EU(a | xB) – maxa’ EU(a’)

But when selecting medical tests XB to perform, we 

don’t know their outcome xB!!

Bayesian’s response: 

Prior belief about likelihood of test outcomes P(xB)

�Expected value of observing XB

VOI(B) = ∑xB
P(xB) Value(XB = xB)
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Example value of information
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Greedy Information gathering
Start with no observations B={};

V = maxa EU(a)

Repeat

For each test Xi compute 

pi = P(Xi = 1 | XB = xB) 

Vi = pi maxa EU(a | Xi=1, xB)  + (1-pi) maxa EU(a | Xi=0, xB)

Let i* = argmaxi Vi

If Vi*≤ V then break

Else observe Xi* = xi*; B = B ∪ {i*}
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Decision trees
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Greedy algorithm optimal??
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Optimal value of information
Can we efficiently find an optimal decision tree?

� Answer depends on properties of the 
distribution P(X1,…,Xn,Y)

Theorem [Krause & Guestrin IJCAI ’05]:

If the random variables form a Markov Chain, can find 
optimal (exponentially large!) decision tree in 
polynomial time ☺

There exists a class of distributions for which we can 
perform efficient inference (i.e., compute P(Y|Xi)), 
where finding the optimal decision tree is NPPP hard
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Approximating value of information?
If we can’t find an optimal solution, can we find 

provably near-optimal approximations??

Yes, but have to make certain assumptions about the 

value of information objective (next 2 lectures)
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Generalizing value of information

Value of information:

Reward[ P(Y | xi) ] = maxa EU(a | xi)

Reward can by any function of the distribution P(Y | xi)

Important examples: 

Posterior variance of Y

Posterior entropy of Y

Prior P(Y) Posterior P(Y | xi)obs Xi = xi Reward
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Automated environmental monitoring

Monitor pH values using robotic sensor

Position s along transect

p
H

 v
a

lu
e

Observations B ⊆⊆⊆⊆ V

True (hidden) pH values

Prediction at unobserved

locations

transect

Use probabilistic model

(Gaussian processes)

to estimate prediction error
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Recap: Gaussian processes
A Gaussian Process (GP) is a 

(infinite) set of random variables, indexed by some set V

i.e., for each x∈ V there’s a RV Yx

Let A ⊆ V, |A|= {x1,…,xk} < ∞

Then 

YA ~ N(µA,ΣAA)

where

K: V× V → R is called kernel (covariance) function

µ:        V → R is called mean function
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Inference in GPs
Set of locations V

Observations XB = xB at locations B

Want to make predictions at unobserved locations A

P(XA = xA| XB = xB) = N(xA; µA|B, ΣA|B)
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Spatial prediction in GPs

Based on observations XB = xB at locations B, make 

predictions at unobserved locations A ⊆ V:

P(XA = xA| XB = xB) = N(xA; µA|B, ΣA|B)

In order to select most useful observations, need to 

quantify uncertainty in predictive distribution P(XA | xB)

Position s along transect

p
H

 v
a

lu
e

Observations B ⊆⊆⊆⊆ V World discretized

into finite set of

locations V
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Quantifying uncertainty
Different possibilities

used in practice:

Expected mean squared prediction error (EMSE):

EMSE(XA | XB = xB) = 1/|B| ∑s σs|A
2

Maximum predictive variance (MPV):

MPV(XA | XB = xB) = maxs σs|A
2

Entropy:

H(XA | XB = xB) = ½ log |ΣA|B| +  n/2 log (2 π e)
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Greedy Bayesian experimental design

Start with no observations B={};

For i = 1 to k

For each possible location Xi compute 

Vi = EMSE(XA | Xi, XB)

Let i* = argmini Vi

Observe Xi* = xi*; B = B ∪ {i*}
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Greedy algorithm
Matlab demo
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Quantifying uncertainty
Different possibilities:

Expected mean squared prediction error (EMSE):

“Bayesian A-optimality”

EMSE(XA | XB = xB) = 1/|B| ∑s σs|A
2

Maximum predictive variance (MPV):

MPV(XA | XB = xB) = maxs σs|A
2

Entropy: “Bayesian D-optimality”

H(XA | XB = xB) = ½ log |ΣA|B| +  n/2 log (2 π e)

All these measures do ONLY depend on ΣΣΣΣB|A
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Independence of observations
EMSE, MPV, Entropy only depend on ΣA | B

FEMSE(B) =  ∫ p(xB) EMSE(XA | XB = xB) dxB

=  1/n trace ΣA|B

Expected reward when observing B independent of 
actual observation xB!

Expected posterior EMSE only depends on chosen 
locations B!
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Implications
Can plan observations ahead of time before making 

measurements (logistically simpler)

If kernel is isotropic K(x,y) = f( |x-y| ), regularly spaced 

designs are optimal

Example: K(x,y) = exp( (x-y)2/θ2)
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Nonstationary spatial correlation
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Precipitation 
(rain) data 

from Pacific NW

Non-local, Non-circular 
correlations
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Nonstationarity by spatial partitioning

10 20 30 40 50
0

1

Coordinates (m)
10 20 30 40 50
0

1

Coordinates (m)
10 20 30 40 50
0

1

Coordinates (m)

Need to learn parameters θi of nonstationary kernel 

function from data

Can apply techniques from active learning to do that 

[Krause & Guestrin, ICML ’07]

Partition into regions

Isotropic GP for each 

region, weighted by 

region membership

K(x,y) = exp((x-y)2/θi
2)

Final GP is spatially varying 

linear combination

θθθθ1 θθθθ2 θθθθ3 θθθθ4
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Can narrow down kernel bandwidth by sensing within 

and outside bandwidth distance! ☺

Learning the bandwidth

SERVER
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Bandwidth

Sensors within
bandwidth are
correlated

Sensors outside
bandwidth are
≈≈≈≈ independent
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Square exponential kernel:

Choose pairs of samples at distance ∆
to test correlation!

Hypothesis testing:

Distinguishing two bandwidths

Correlation
under BW=3

Correlation
under BW=1

Distance ∆

BW = 1

BW = 3

correlation gap largest
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1 2 3 4 5
0
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0.4

0.6
P

(θ
)

1 2 3 4 5
0

0.2

0.4

0.6
P

(θ
)

Find “most informative split” at posterior median

Hypothesis testing:

Searching for bandwidth

Test: BW>2?

Test: BW>3?

Testing policy needs only 
logarithmically 
many tests! ☺

SERVER

LAB
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COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
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What you need to know
Maximum expected utility principle

Value of information

Bayesian experimental design in GPs

Bayesian active learning for regression

Different optimality criteria (EMSE, MPV, Entropy)


