Active Learning and Optimized Information Gathering

Lecture 11 - Bayesian Experimental Design

CS 101.2
Andreas Krause

Announcements

- Homework 2: Due Thursday Feb 19
- Project milestone due: Feb 24
- 4 Pages, NIPS format:

http://nips.cc/PaperInformation/StyleFiles

- Should contain preliminary results (model, experiments, proofs, ...) as well as timeline for remaining work
- Come to office hours to discuss projects!
- Office hours
- Come to office hours before your presentation!
- Andreas: Monday 3pm-4:30pm, 260 Jorgensen
- Ryan: Wednesday 4:00-6:00pm, 109 Moore

Review of Active Learning

- PAC Learning:
- How many labeled examples do we need to get error $\leq \varepsilon$ with probability 1- δ
- Passive learning
- $\mathrm{n}=\mathrm{O}^{\prime}\left(1 / \varepsilon^{2}(\mathrm{VC}(\mathrm{H})+\log 1 / \delta)\right)$ suffice
- Bounds crucially depend on i.i.d. data
- Active learning
- Uncertainty sampling \rightarrow Bias
- Can avoid bias (and get fall-back guarantee) using pool-based active learning

Algorithms for active learning

- Generalized binary search: Shrink version space (set of consistent hypotheses) as quickly as possible
- Sample complexity depends both on H and P_{X}
- Splitting index
- Disagreement coefficient
- Can in some cases get exponential improvements in rate of error reduction: $(\log 1 / \varepsilon)^{2}$ instead of $1 / \varepsilon^{2} \odot$

Course outline

1. Online decision making

2. Statistical active learning

3. Combinatorial approaches

Medical diagnosis

- Want to predict medical condition of patient given noisy symptoms / tests
- Body temperature
- Rash on skin
- Cough
- Increased antibodies in blood

	healthy	sick
Treatment	$-\$ \$$	$\$$
No treatment	0	$-\$ \$ \$$

- Abnormal MRI
- Treating a healthy patient is bad, not treating a sick patient is terrible
- Each test has a (potentially different) cost
- Which tests should we perform to make most effective decisions?

General approach:

1. Model patients condition \mathbf{Y} and outcomes of tests

X_{1}, \ldots, X_{n} as random variables

2. Assign cost for

- "misdiagnosis" (predicting wrong value of Y)
- Performing tests (learning value x_{i} of some X_{i})

3. Select tests to perform to minimize total cost

Let's see how we can do this...

Decision theory

- Bernoulli random variable $Y ; Y=1$ (sick) $Y=0$ (healthy)
- Can perform two actions: $\mathrm{A}=1$ (treat) or 0 (not treat)
- Obtain utility U(a,y)
- Don't know y!
- A priori probability $\mathrm{P}(\mathrm{Y}=1)=\mathrm{p}$

$U(a, y)$	$Y=0$	$Y=1$
$A=0$	0	-100
$A=1$	-10	10

- Choose action to maximize expected utility

$$
a^{*}=\operatorname{argmax}_{a} E U(a)=\rho U(a, 1)+(1-\rho) U(a, 0)
$$

Shape of expected utility

$$
\begin{aligned}
& p=P(y=1) \\
& a: p U(1, a)+(1-p) u(0, a)
\end{aligned}
$$

Informed decision making

- Observations help us make decisions
- Model possible observations as random variables X_{1}, \ldots, X_{n}
- Observing $X_{i}=x_{i}$ allows us to perform inference:

$$
P\left(Y=1 \mid X_{i}=x_{i}\right)=\frac{P\left(y=1 \cdot P\left(x_{i}=x_{i}\right)\right.}{P\left(x_{i}\right)}
$$

- Observation changes our expected utility (and action)

$$
a^{*}=\operatorname{argmax}_{a} E U\left(a \mid x_{i}\right)=p^{\prime} U(1, a)+\left(1-p^{\prime}\right) U(0, a)
$$

Informed decision making

- More generally, make multiple observations

$$
X_{1}=x_{1}, X_{4}=x_{4}, \ldots, X_{6}=x_{6}
$$

For index set $B=\left\{i_{1}, \ldots, i_{k}\right\}$ write $X_{B}=\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$

- Compute $\mathrm{P}\left(\mathrm{Y}=1 \mid \mathrm{X}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}}\right)=\mathrm{p}^{\prime \prime}$
$\rightarrow a^{*}=\operatorname{argmax}_{\mathrm{a}} \mathrm{EU}\left(\mathrm{a} \mid \mathrm{x}_{\mathrm{B}}\right)=\mathrm{p}^{\prime \prime} \mathrm{U}(1, a)+\left(1-\mathrm{p}^{\prime \prime}\right) \mathrm{U}(0, a)$
- Value of observing $X_{B}=x_{B}$:

$$
\underbrace{\max _{a} \mathrm{EU}\left(\mathrm{a} \mid \mathbf{x}_{\mathrm{B}}\right)}_{\text {max porfero aticity }}-\underbrace{\max _{a^{\prime}} \mathrm{EU}\left(\mathrm{a}^{\prime}\right)}_{\text {mace prior atity }}
$$

Value of information [Howard '66]

- Value of observing $X_{B}=x_{B}$:

$$
\text { Value }\left(X_{B}=x_{B}\right)=\max _{a} E U\left(a \mid x_{B}\right)-\max _{a^{\prime}} E U\left(a^{\prime}\right)
$$

- But when selecting medical tests \mathbf{X}_{B} to perform, we don't know their outcome $\mathbf{x}_{\mathbf{B}}$!!
- Bayesian's response: Prior belief about likelihood of test outcomes $\mathrm{P}\left(\mathbf{x}_{\mathrm{B}}\right)$
\rightarrow Expected value of observing X_{B}

$$
\operatorname{VOI}(B)=\sum_{x_{B}} P\left(x_{B}\right) \text { Value }\left(X_{B}=x_{B}\right)
$$

Example value of information

$$
\begin{gathered}
P(y)=.5 \quad 1 \quad x=y \text { with prob. } 5 \\
\begin{array}{l}
u(\{0,13) \text { with prob.5 }
\end{array} \\
P(y=1 \mid x=1)=\frac{P(y \mid 1) P(x=1 \mid y=1)}{P(x=1)}=\frac{5 \cdot \frac{3}{4}}{-5}=\frac{3}{4}
\end{gathered}
$$

	$A=1$	0
y	1	-1
0	-1	1

$$
\begin{array}{ll}
\rho=P(Y=1) \quad & E \cup A a)=0 \\
& E u(A=1 \mid x=1)=.5 \\
0 \quad x=1)=-.5 \\
& E u(A=1 \mid x=0)=-.5 \\
& E u(A=0 \mid x=0)=.5
\end{array}
$$

$$
\begin{aligned}
\operatorname{Vol}(x) & =P(x=1) \cdot \max _{\operatorname{ar}}^{\operatorname{En}(A-a \mid x=1)}+P(x=0) \\
& =.5 \cdot .5+1.5 \cdot .5=.5 .5
\end{aligned}
$$

Greedy Information gathering

- Start with no observations B=\{\};
- $V=\max _{\mathrm{a}} \mathrm{EU}(\mathrm{a})$
- Repeat
- For each test X_{i} compute

$$
\begin{aligned}
& p_{i}=P\left(X_{i}=1 \mid X_{B}=x_{B}\right) \\
& V_{i}=p_{i} \max _{a} E U\left(a \mid X_{i}=1, x_{B}\right)+\left(1-p_{i}\right) \max _{a} E U\left(a \mid X_{i}=0, x_{B}\right)
\end{aligned}
$$

- Let $\mathrm{i}^{*}=\operatorname{argmax}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
- If $\mathrm{V}_{\mathrm{i}^{*}} \leq \mathrm{V}$ then break Else observe $X_{i^{*}}=x_{i^{*}} ; B=B \cup\left\{i^{*}\right\}$

Decision trees

Greedy algorithm optimal??

$$
P(y=1)=.5
$$

$X_{1} \ldots X_{m}$
$\begin{aligned} X_{i}= & y \text { with prob } .5 \\ & \text { u } \mid\left\langle 0_{i} i j\right| \text { with prob. } 5<\end{aligned}$
$x_{1} \ldots x_{m}$ conditionally indepardat given y

u	$A=1, A=0, A=$ pass		
$y=1$	1	-10	$-\varepsilon$
$y=0$	-10	1	$-\varepsilon$

$$
P\left(y+1 \mid x_{1}=1, x_{2}=11, \ldots x_{g}=1\right)=1.5^{26}
$$

Optimal value of information

- Can we efficiently find an optimal decision tree?
\rightarrow Answer depends on properties of the distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}\right)$

$$
P\left(x_{1}, \ldots x_{n}\right)=T P\left(x_{i}\left(x_{i,}\right)\right.
$$

Theorem [Krause \& Guestrin IJCAI '05]:

- If the random variables form a Markov Chain, can find optimal (exponentially large!) decision tree in polynomial time ;

- There exists a class of distributions for which we can perform efficient inference (i.e., compute $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{\mathrm{i}}\right)$), where finding the optimal decision tree is NP ${ }^{\text {PP }}$ hard

Approximating value of information?

- If we can't find an optimal solution, can we find provably near-optimal approximations??
- Yes, but have to make certain assumptions about the value of information objective (next 2 lectures)

Generalizing value of information

- Value of information: $\operatorname{Reward}\left[P\left(Y \mid x_{i}\right)\right]=\max _{a} E U\left(a \mid x_{i}\right)$
- Reward can by any function of the distribution $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{x}_{\mathrm{i}}\right)$
- Important examples:
- Posterior variance of Y
- Posterior entropy of Y

Automated environmental monitoring

- Monitor pH values using robotic sensor

Recap: Gaussian processes

- A Gaussian Process (GP) is a
- (infinite) set of random variables, indexed by some set V i.e., for each $x \in V$ there's a $R V Y_{x}$
- Let $A \subseteq V,|A|=\left\{x_{1}, \ldots, x_{k}\right\}<\infty$

Then

$$
Y_{A} \sim N\left(\mu_{A}, \Sigma_{A A}\right)
$$

where
$\Sigma_{A A}=\left(\begin{array}{cccc}\mathcal{K}\left(x_{1}, x_{1}\right) & \mathcal{K}\left(x_{1}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{1}, x_{n}\right) \\ \vdots & & & \vdots \\ \mathcal{K}\left(x_{k}, x_{1}\right) & \mathcal{K}\left(x_{k}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{k}, x_{k}\right)\end{array}\right) \quad \mu_{A}=\left(\begin{array}{c}\mu\left(x_{1}\right) \\ \mu\left(x_{2}\right) \\ \vdots \\ \mu\left(x_{k}\right)\end{array}\right)$

- $\mathrm{K}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{R} \quad$ is called kernel (covariance) function $\mu: \quad V \rightarrow R \quad$ is called mean function

Inference in GPs

- Set of locations V
- Observations $X_{B}=x_{B}$ at locations B
- Want to make predictions at unobserved locations A
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mid \mathrm{X}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}}\right)=\mathrm{N}\left(\mathrm{x}_{\mathrm{A}} ; \mu_{\mathrm{A} \mid \mathrm{B}}, \Sigma_{\mathrm{A} \mid \mathrm{B}}\right)$

$$
\begin{aligned}
& \mu_{A \mid B}=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\mu_{B}\right) \\
& \Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

Spatial prediction in GPs

World discretized into finite set of locations V

Position s along transect

- Based on observations $X_{B}=x_{B}$ at locations B, make predictions at unobserved locations $\mathrm{A} \subseteq \mathrm{V}$:
$P\left(X_{A}=x_{A} \mid X_{B}=x_{B}\right)=N\left(x_{A} ; \mu_{A \mid B}, \Sigma_{A \mid B}\right)$

In order to select most useful observations, need to quantify uncertainty in predictive distribution $P\left(X_{A} \mid x_{B}\right)_{2}$

Quantifying uncertainty

- Different possibilities used in practice:
- Expected mean squared prediction error (EMSE):
 $\operatorname{EMSE}\left(X_{A} \mid X_{B}=X_{B}\right)=1 /|B| \sum_{S} \sigma_{S \mid A}^{2} \in \underset{\substack{2 \\ \text { vargeriance }}}{\substack{\text { costenion }}}$
- Maximum predictive variance (MPV):

$$
\operatorname{MPV}\left(X_{A} \mid X_{B}=x_{B}\right)=\max _{s} \sigma_{s \mid A}^{2}
$$

- Entropy:

$$
H\left(X_{A}\left(x_{B}\right)=-\int p\left(x_{A} \mid x_{B}\right) \log p\left(x_{A} \mid x_{B}\right) d x_{A}\right.
$$

$$
H\left(X_{A} \mid X_{B}=X_{B}\right)=1 / 2 \log \left|\Sigma_{A \mid B}\right|+n / 2 \log (2 \pi e)
$$

Greedy Bayesian experimental design

- Start with no observations B=\{\};
- For $\mathrm{i}=1$ to k
- For each possible location X_{i} compute

$$
V_{i}=\operatorname{EMSE}\left(X_{A} \mid X_{i}, X_{B}\right)
$$

- Let $\mathrm{i}^{*}=\operatorname{argmin}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
- Observe $\mathrm{X}_{\mathrm{i}^{*}}=\mathrm{x}_{\mathrm{i}^{*}} ; \mathrm{B}=\mathrm{B} \cup\left\{\mathrm{i}^{*}\right\}$

Greedy algorithm

- Matlab demo

Quantifying uncertainty

- Different possibilities:
- Expected mean squared prediction error "Bayesian A-optimality"

$$
\operatorname{EMSE}\left(X_{A} \mid X_{B}=x_{B}\right)=1 /|B| \sum_{s} \sigma_{s \mid \mathbb{B}^{2}}^{2}
$$

- Maximum predictive variance (MPV):

$$
\operatorname{MPV}\left(X_{A} \mid X_{B}=x_{B}\right)=\max _{s} \sigma_{s \mid A}^{2}
$$

$$
\text { EMSE } \geq \text { trace } \sum_{B A A}
$$

$$
\text { doces not depend on } \mu_{B 1 A}
$$

- Entropy: "Bayesian D-optimality"

$$
H\left(X_{A} \mid X_{B}=X_{B}\right)=1 / 2 \log \left|\Sigma_{A \mid B}\right|+n / 2 \log (2 \pi e)
$$

All these measures do ONLY depend on $\Sigma_{B \mid A}$

Independence of observations

- EMSE, MPV, Entropy only depend on $\Sigma_{\text {A } / \text { B }}$

$$
\Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A} \sim \sim \begin{gathered}
\text { doer not dopad on } \\
\text { octual obrenctions } \\
x_{B} x_{B}
\end{gathered}
$$

- $F_{\text {EMSE }}(B)=\int p\left(x_{B}\right) \underbrace{\operatorname{EMSE}\left(X_{A} \mid X_{B}=x_{B}\right) d x_{B}}_{\text {doer not depoad on } X_{B}}$

$$
=1 / n \text { trace } \sum_{A \mid B C B}^{\tan } \sum_{A \mid B}
$$

- Expected reward when observing B independent of actual observation x_{B} !
- Expected posterior EMSE only depends on chosen locations B!

Implications

- Can plan observations ahead of time before making measurements (logistically simpler)
- If kernel is isotropic $K(x, y)=f(|x-y|)$, regularly spaced designs are optimal Example: $K(x, y)=\exp \left((x-y)^{2} / \theta^{2}\right)$

Nonstationary spatial correlation

Non-local, Non-circular correlations

Precipitation
 (rain) data from Pacific NW

Complex positive and negative correlations

Nonstationarity by spatial partitioning

- Partition into regions
- Isotropic GP for each region, weighted by region membership

$$
K(x, y)=\exp \left((x-y)^{2} / \theta_{i}^{2}\right)
$$

- Final GP is spatially varying linear combination
- Need to learn parameters θ_{i} of nonstationary kernel function from data
- Can apply techniques from active learning to do that [Krause \& Guestrin, ICML '07]

Learning the bandwidth

Can narrow down kernel bandwidth by sensing within and outside bandwidth distance! :)

Hypothesis testing:
 Distinguishing two bandwidths

- Square exponential kernel: $\mathcal{K}(s, t)=\exp \left(-\frac{\|s-t\|_{2}^{2}}{\theta^{2}}\right)$

Distance Δ correlation gap largest

Correlation
under BW=3

Correlation under BW=1

- Choose pairs of samples at distance Δ to test correlation!

Hypothesis testing:
 Searching for bandwidth

- Find "most informative split" at posterior median

What you need to know

- Maximum expected utility principle
- Value of information
- Bayesian experimental design in GPs
- Bayesian active learning for regression
- Different optimality criteria (EMSE, MPV, Entropy)

