Active Learning and Optimized Information Gathering

Lecture 11 – Bayesian Experimental Design

CS 101.2 Andreas Krause

Announcements

- Homework 2: Due Thursday Feb 19
- Project milestone due: Feb 24
 - 4 Pages, NIPS format: <u>http://nips.cc/PaperInformation/StyleFiles</u>
 - Should contain preliminary results (model, experiments, proofs, ...) as well as timeline for remaining work
 - Come to office hours to discuss projects!
- Office hours
 - Come to office hours before your presentation!
 - Andreas: Monday 3pm-4:30pm, 260 Jorgensen
 - Ryan: Wednesday 4:00-6:00pm, 109 Moore

Review of Active Learning

- PAC Learning:
 - How many labeled examples do we need to get error $\leq \epsilon$ with probability 1- δ
- Passive learning
 - n = O'($1/\epsilon^2$ (VC(H) + log $1/\delta$)) suffice
 - Bounds crucially depend on i.i.d. data
- Active learning
 - Uncertainty sampling -> Bias
 - Can avoid bias (and get fall-back guarantee) using pool-based active learning

Algorithms for active learning

- Generalized binary search: Shrink version space (set of consistent hypotheses) as quickly as possible
- Sample complexity depends both on H and P_x
 - Splitting index
 - Disagreement coefficient
- Can in some cases get exponential improvements in rate of error reduction: (log 1/ε)² instead of 1/ε² ^(C)

Course outline

1. Online decision making

2. Statistical active learning

3. Combinatorial approaches

Medical diagnosis

- Want to predict medical condition of patient given noisy symptoms / tests
 - Body temperature
 - Rash on skin
 - Cough
 - Increased antibodies in blood
 - Abnormal MRI
- Treating a healthy patient is bad, not treating a sick patient is terrible
- Each test has a (potentially different) cost
- Which tests should we perform to make most effective decisions?

	healthy	sick
Treatment	-\$\$	\$
No treatment	0	-\$\$\$

General approach:

- 1. Model patients condition **Y** and outcomes of tests $X_1, ..., X_n$ as **random variables**
- 2. Assign cost for
 - "misdiagnosis" (predicting wrong value of Y)
 - Performing tests (learning value x_i of some X_i)
- 3. Select tests to perform to minimize total cost

Let's see how we can do this...

Decision theory

- Bernoulli random variable Y; Y=1 (sick) Y=0 (healthy)
- Can perform two actions: A=1 (treat) or 0 (not treat)
- Obtain utility U(a,y)
- Don't know y!
- A priori probability P(Y=1) = p
- Choose action to maximize expected utility

$$a^* = \operatorname{argmax}_a EU(a) = \rho \left(\left(a, l \right) + \left(\left(-\rho \right) \right) \left(\left(a, o \right) \right)$$

U(a,y)	Y=0	Y=1
A=0	0	-100
A=1	-10	10

Shape of expected utility

p = P(y=1)a: p(U(1,a) + (1-p)U(0,a)

Informed decision making

- Observations help us make decisions
- Model possible observations as random variables
 X₁, ..., X_n
- Observing $X_i = x_i$ allows us to perform inference:

$$P(Y=1 | X_i = x_i) = \frac{P(Y=i) \cdot P(X_i = x_i)}{P(X_i)}$$

Observation changes our expected utility (and action)

$$a^* = argmax_a EU(a | x_i) = p' U(1,a) + (1-p') U(0,a)$$

Informed decision making

More generally, make multiple observations
 X₁ = x₁, X₄ = x₄, ..., X₆ = x₆
 For index set B = {i₁,...,i_k} write X_B = (X_{i1},..., X_{ik})

• Compute
$$P(Y = 1 | X_B = X_B) = p''$$

→ $a^* = \operatorname{argmax}_a EU(a | \mathbf{x}_B) = p'' U(1,a) + (1-p'') U(0,a)$

• Value of observing $X_B = x_B$: $\max_a EU(a \mid x_B) - \max_{a'} EU(a')$ $\max_{a'} EU(a') - \max_{a'} EU(a')$

Value of information [Howard '66]

Value of observing $X_B = x_B$:
Value($X_B = x_B$)=max_a EU(a | x_B) – max_a' EU(a')

- But when selecting medical tests X_B to perform, we don't know their outcome x_B!!
- Bayesian's response:
 Prior belief about likelihood of test outcomes P(x_B)

→ Expected value of observing X_B VOI(B) = $\sum_{x_B} P(x_B)$ Value($X_B = x_B$)

Example value of information

P(Y) = .5 , X = Y with prob.5 U(E0,13) with prob.5 $P(Y=1 | X=1) = \frac{P(Y_{1}) P(X=1 | Y=1)}{P(X=1)} = \frac{15 \cdot \frac{3}{4}}{5}$ - = 3 X=1 1 -1 0 1 1 ·75 p p=P(Y=1) EUAa) = 0 .5 Eu(A=1|X=1) = .5Eu(A=0|X=0) = .5Eu(A=0|X=0) = .5 $Voi(X) = P(X=1) \cdot \max_{a} Eu(Ax_{x}|X=1) + P(X=0) \cdots$

Greedy Information gathering

- Start with no observations B={};
- V = $\max_{a} EU(a)$
- Repeat
 - For each test X_i compute

 $p_i = P(X_i = 1 | X_B = X_B)$

 $V_i = p_i \max_a EU(a | X_i=1, \mathbf{x}_B) + (1-p_i) \max_a EU(a | X_i=0, \mathbf{x}_B)$

Let i* = argmax_i V_i

• If $V_{i^*} \leq V$ then break Else observe $X_{i^*} = x_{i^*}$; $B = B \cup \{i^*\}$

Decision trees

Greedy algorithm optimal??

$$\frac{\int A=1, A=0, A=pass}{f=1}$$

Optimal value of information

Can we efficiently find an optimal decision tree?

→ Answer depends on properties of the distribution P(X₁,...,X_n,Y)

P(X. ... Xm)= []P(X. (X...)

Theorem [Krause & Guestrin IJCAI '05]:

- If the random variables form a Markov Chain, can find optimal (exponentially large!) decision tree in polynomial time ⁽ⁱ⁾
- There exists a class of distributions for which we can perform efficient inference (i.e., compute P(Y|X_i)), where finding the optimal decision tree is NP^{PP} hard

Approximating value of information?

- If we can't find an optimal solution, can we find provably near-optimal approximations??
- Yes, but have to make certain assumptions about the value of information objective (next 2 lectures)

Generalizing value of information

Prior P(Y) obs
$$X_i = x_i$$
 Posterior P(Y | x_i) Reward

Value of information:
 Reward[P(Y | x_i)] = max_a EU(a | x_i)

- Reward can by **any function** of the distribution $P(Y | x_i)$
- Important examples:
 - Posterior variance of Y
 - Posterior entropy of Y

Automated environmental monitoring

Monitor pH values using robotic sensor

Recap: Gaussian processes

- A Gaussian Process (GP) is a
 - (infinite) set of random variables, indexed by some set V
 i.e., for each x∈ V there's a RV Y_x

• Let
$$A \subseteq V$$
, $|A| = \{x_1, \dots, x_k\} < \infty$

Then

$$Y_A \simeq N(\mu_A, \Sigma_{AA})$$

where

$$\Sigma_{AA} = \begin{pmatrix} \mathcal{K}(x_1, x_1) & \mathcal{K}(x_1, x_2) & \dots & \mathcal{K}(x_1, x_n) \\ \vdots & & \vdots \\ \mathcal{K}(x_k, x_1) & \mathcal{K}(x_k, x_2) & \dots & \mathcal{K}(x_k, x_k) \end{pmatrix} \quad \mu_A = \begin{pmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_k) \end{pmatrix}$$

 $\begin{array}{ll} \bullet \ \mathsf{K} \colon \mathsf{V} \times \mathsf{V} \to \mathsf{R} & \text{ is called } \textbf{kernel} \text{ (covariance) function} \\ \mu \colon \quad \mathsf{V} \to \mathsf{R} & \text{ is called } \textbf{mean} \text{ function} \end{array}$

Inference in GPs

- Set of locations V
- Observations X_B = x_B at locations B
- Want to make predictions at unobserved locations A

•
$$P(X_A = x_A | X_B = x_B) = N(x_A; \mu_{A|B}, \Sigma_{A|B})$$

$$\mu_{A|B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$$
$$\Sigma_{A|B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$$

Spatial prediction in GPs

World discretized into finite set of locations **V**

Based on observations X_B = x_B at locations B, make predictions at unobserved locations A \subseteq V: P(X = x + X = x) = N(x + u = x)

$$\mathsf{P}(\mathsf{X}_{\mathsf{A}} = \mathsf{x}_{\mathsf{A}} | \mathsf{X}_{\mathsf{B}} = \mathsf{x}_{\mathsf{B}}) = \mathsf{N}(\mathsf{x}_{\mathsf{A}}; \mu_{\mathsf{A}|\mathsf{B}}, \Sigma_{\mathsf{A}|\mathsf{B}})$$

In order to select most useful observations, need to **quantify uncertainty** in predictive distribution $P(X_A | x_B)$

Quantifying uncertainty

 Different possibilities used in practice:

• Expected mean squared prediction error (EMSE): $\begin{bmatrix} Voltame \ old \ Confiden \ bood \end{bmatrix}$ EMSE($X_A \mid X_B = x_B$) = $1/|B| \sum_s \sigma_{s|A}^2 \in A_{variance}$

• Maximum predictive variance (MPV): MPV($X_A | X_B = x_B$) = max_s $\sigma_{s|A}^2$

• Entropy: $H(X_{A}(x_{B}) = -\int P(x_{A}(x_{B}) \log P(x_{A}(x_{B}) A x_{A}) + M(X_{A} | X_{B} = x_{B}) = \frac{1}{2} \log |\Sigma_{A|B}| + \frac{1}{2} \log (2 \pi e)$

Greedy Bayesian experimental design

- Start with no observations B={};
- For i = 1 to k

For each possible location X_i compute

 $V_i = EMSE(X_A | X_i, X_B)$

- Let i* = argmin_i V_i
- Observe $X_{i^*} = x_{i^*}; B = B \cup \{i^*\}$

Greedy algorithm

Matlab demo

Quantifying uncertainty

- Different possibilities:
- Expected mean squared prediction error **"Bayesian A-optimality"** EMSE($X_A | X_B = x_B$) = 1/|B| $\sum_s \sigma_{s|B}^2$
- Maximum predictive variance (MPV): MPV($X_A \mid X_B = x_B$) = max_s $\sigma_{s|A}^2$

• Entropy: **"Bayesian D-optimality"** H(X_A | X_B = x_B) = $\frac{1}{2} \log |\Sigma_{A|B}| + n/2 \log (2 \pi e)$

All these measures do ONLY depend on $\Sigma_{\rm B|A}$

Independence of observations

• EMSE, MPV, Entropy only depend on $\Sigma_{A \mid B}$

$$\Sigma_{A|B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA} \quad \text{observations} \quad \text{actual observations} \quad X_B > X_B}$$

•
$$F_{EMSE}(B) = \int p(x_B) \underbrace{EMSE(X_A \mid X_B = x_B)}_{decs \text{ hot depend on } X_B} dx_B$$

= $1/n \operatorname{trace} \sum_{A \mid B}^{\operatorname{trace}} \underbrace{\sum_{A \mid B}}_{A \mid B} dx_B$

- Expected reward when observing B independent of actual observation x_B!
- Expected posterior EMSE only depends on chosen locations B!

Implications

- Can plan observations ahead of time before making measurements (logistically simpler)
- If kernel is isotropic K(x,y) = f(|x-y|), regularly spaced designs are optimal Example: K(x,y) = exp($(x-y)^2/\theta^2$)

Nonstationary spatial correlation

Non-local, Non-circular correlations Precipitation (rain) data from Pacific NW

Complex positive and negative correlations

Nonstationarity by spatial partitioning

- Partition into regions
- Isotropic GP for each region, weighted by region membership

$$K(x,y) = \exp((x-y)^2/\theta_i^2)$$

- Final GP is spatially varying linear combination
- Need to learn parameters θ_i of nonstationary kernel function from data
- Can apply techniques from active learning to do that [Krause & Guestrin, ICML '07]

Learning the bandwidth

Can **narrow down** kernel **bandwidth** by sensing **within** and **outside** bandwidth distance! ③

Hypothesis testing: Distinguishing two bandwidths

Choose pairs of samples at distance Δ to test correlation!

Hypothesis testing: Searching for bandwidth

Find "most informative split" at posterior median

What you need to know

- Maximum expected utility principle
- Value of information
- Bayesian experimental design in GPs
 - Bayesian active learning for regression
 - Different optimality criteria (EMSE, MPV, Entropy)