CS101.2 February 5^{th,} 2009 Paper by Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni Slides by David Lee

A GENERAL AGNOSTIC ACTIVE LEARNING ALGORITHM

REVIEW OF LEARNING

× Passive Learning

+
$$n \ge \frac{1}{\epsilon} (\log|H| + \log\frac{1}{\delta})$$

+ $n \ge \frac{1}{\epsilon^2} (\log|H| + \log\frac{1}{\delta})$
+ $n \ge \frac{1}{\epsilon^2} (\log|VC(H)| + \log\frac{1}{\delta})$

REVIEW OF LEARNING

× Active Learning

Uncertainty Sampling

Pool-Based

Greedy Approach Query by Committee

REVIEW OF LEARNING

- × Leads to Agnostic Algorithm
 - + Deals with noisy data
 - + Good label complexity
 - + No region of uncertainty

ORIGINAL POOL-BASED

- × Collect unlabeled data
- Actively request labels L until there is a single relevant hypothesis consistent with L
- × Output any consistent hypothesis with those labels.

$$Pr(error_{true} \le \epsilon) \ge 1 - \delta$$

MODIFICATIONS

Actively request labels L until there is a single relevant hypothesis consistent with L

- × no particular order
- × request or guess label

MODIFICATIONS

Actively request labels L until there is a *single relevant hypothesis* consistent with L

× goal is label all points

MODIFICATIONS

Actively request labels L until there is a single relevant hypothesis *consistent with L*

- × Minimize error on L
- × Consistent on "guessed" points

VISUAL ALGORITHM

Sinder Heetleerie atof saisr teatied Här, largver, reveugeste sonthfant it islabel

FORMAL ALGORITHM

 (x_1, x_2, \ldots, x_m) i.i.d. from D_x $S = \emptyset$ and $T = \emptyset$ are sets of unlabeled and labeled data For each $x \in x_{1,...,m}$ Let $h_{+} = LEARN(S_{n-1} \cup (x, +1), T_{n-1})$ Let $h_{-} = LEARN(S_{n-1} \cup (x, -1), T_{n-1})$ If $|err(h_+, S_{n-1} \cup T_{n-1}) - err(h_-, S_{n-1} \cup T_{n-1})| > \triangle_{n-1}$ $y = min(err(h_+, S_{n-1} \cup T_{n-1}), err(h_-, S_{n-1} \cup T_{n-1}))$ $S_n = S_{n-1} \cup (x, y) \text{ and } T_n = T_{n-1}$ Else y = request(x) $S_n = S_{n-1}$ and $T_n = T_{n-1} \cup (x, y)$ Return $h = LEARN(S_m, T_m)$

ACHIEVEMENTS

- × Fallback Guarantee
 - + i.i.d generalization bounds for $\ \ S \cup T$
 - + mathematically involved... read the paper 🙂

+
$$err_n(h) - err_n(h') = \widehat{err}_n(h) - \widehat{err}_n(h')$$

+ choose Δ_n

ACHIEVEMENTS

× Rate Improvement

- + Achieve exponential improvement for some situations
- + Can analyze in terms of disagreement coefficient

DISAGREEMENT COEFFICIENT

- × Metric on the hypothesis space
- × Measures how "different" hypothesis are
- Idea: can eliminate hypothesis that are sufficiently different from current 'best hypothesis'
 - \mathbb{R}

 \mathbb{R}^2

DISAGREEMENT COEFFICIENT

Lots of symbols....!

$$\rho(h, h') = Pr[h(x) \neq h'(x)]$$

$$B(h, r) = \{h' \in H : \rho(h, h') \leq r\}$$

$$\theta = sup\{\frac{Pr[\exists h \in B(h^*, r) \text{ s.t. } h(x) \neq h^*(x)]}{r} : r \geq \epsilon + \nu\}$$

Maximize the percentage of points x such that there exists some hypothesis "close" to h* that doesn't agree with h* on x (ish...)

x Turns out linear separators have $\theta = \sqrt{d}$

LABEL COMPLEXITY

- × Label Complexity linear in θ
- × Previous algorithm using this was θ^2
- ${\bf \times}$ For linear separators, exponential improvement $O(\theta VC(H)log^2(\frac{1}{\epsilon}))$

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

SUMMARY

× General Agnostic Active Learning Algorithm

- Decides whether to label each point instead of actively labeling
- + Can deal with noisy data
- + Good Label Complexity
- > Disagreement Coefficient