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� Active Learning

Uncertainty Sampling Pool-Based Greedy Approach

Query by Committee



� Leads to Agnostic Algorithm

� Deals with noisy data

� Good label complexity

� No region of uncertainty



� Collect unlabeled unlabeled unlabeled unlabeled data

� Actively request labels L until there is a single relevant 

hypothesis consistent with L

� Output any consistent hypothesis with those labels.

Pr(errortrue ≤ ǫ) ≥ 1− δ



� no particular order

� request or guess label

Actively requestActively requestActively requestActively request labels L until there is a single relevant 

hypothesis consistent with L



� goal is label all points

Actively request labels L until there is a single relevant single relevant single relevant single relevant 

hypothesishypothesishypothesishypothesis consistent with L



� Minimize error on L

� Consistent on “guessed” points

Actively request labels L until there is a single relevant 

hypothesis consistent with Lconsistent with Lconsistent with Lconsistent with L



Hallucinate a + labelHallucinate a – labelSince the error of - is “much”
larger, we guess that it is +

Since the errors are similar, 
we request and find - label



For each x ∈ x1..m

y = request(x)

Sn = Sn−1 ∪ (x, y) and Tn = Tn−1

If |err(h+, Sn−1 ∪ Tn−1)− err(h−, Sn−1 ∪ Tn−1)| > △n−1

y = min(err(h+, Sn−1 ∪ Tn−1), err(h−, Sn−1 ∪ Tn−1))

S = ∅ and T = ∅ are sets of unlabeled and labeled data
(x1, x2, . . . , xm) i.i.d. from Dx

Let h− = LEARN (Sn−1 ∪ (x,−1), Tn−1)
Let h+ = LEARN(Sn−1 ∪ (x,+1), Tn−1)

Else

Sn = Sn−1 and Tn = Tn−1 ∪ (x, y)
Return h = LEARN(Sm, Tm)



� Fallback Guarantee

� i.i.d generalization bounds for

� mathematically involved… read the paper ☺

�

� choose 

S ∪ T

△n

errn(h)− errn(h′) = êrrn(h)− êrrn(h′)



� Rate Improvement

� Achieve exponential improvement for some situations 

� Can analyze in terms of disagreement coefficient



� Metric on the hypothesis space

� Measures how “different” hypothesis are

� Idea: can eliminate hypothesis that are sufficiently 

different from current ‘best hypothesis’
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� Maximize the percentage of points x such that there 

exists some hypothesis “close” to h* that doesn’t 

agree with h* on x (ish…)

� Turns out linear separators have 

θ = sup{Pr[∃h∈B(h
∗,r) s.t. h(x) �=h∗(x)]

r
: r ≥ ǫ+ ν}

� Lots of symbols….!

ρ(h, h′) = Pr[h(x) �= h′(x)]
B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r}

θ =
√
d



� Label Complexity linear in θ

� Previous algorithm using this was θ2

� For linear separators, exponential improvement

O(θV C(H)log2( 1
ǫ
))







� General Agnostic Active Learning Algorithm

� Decides whether to label each point instead of actively 

labeling

� Can deal with noisy data

� Good Label Complexity

� Disagreement Coefficient


