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Announcements
Homework 1: Due today

Office hours

Come to office hours before your presentation!

Andreas: Monday 3pm-4:30pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Outline

Background in learning theory

Sample complexity

Key challenges

Heuristics for active learning

Principled algorithms for active learning
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Spam or Ham?

Labels are expensive (need to ask expert)

Which labels should we obtain to maximize 

classification accuracy?
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label = sign(w0 + w1 x1 + w2 x2)

(linear separator)
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Recap: Concept learning
Set X of instances, with distribution PX

True concept c: X � {0,1}

Data set D = {(x1,y1),…,(xn,yn)}, xi ∼ PX, yi = c(xi)

Hypothesis h: X � {0,1} from H = {h1, …, hn, …}

Assume c ∈ H (c also called “target hypothesis”)

errortrue(h) = EX |c(x)-h(x)|

errortrain(h) = (1/n) ∑i |c(xi)-h(xi)|

If n large enough, errortrue(h) ≈≈≈≈ errortrain(h) for all h
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Recap: PAC Bounds
How many samples n to we need to get error ≤ ε

with probability 1-δ ?

No noise: n ≥ 1/ε ( log |H| + log 1/δ )

Noise: n ≥ 1/ε2 ( log |H| + log 1/δ )

Requires that data is i.i.d.!

Today: Mainly no-noise case (more next week)
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Statistical passive/active learning protocol

Data source PX (produces inputs xi)

data set Dn = {(x1,y1),…,(xn,yn)}

Learner outputs hypothesis h

errortrue(h) = Ex~P[h(x) ≠ c(x)]

Active learner assembles 

by selectively obtaining labels

Data set NOT sampled i.i.d.!!



8

Example: Uncertainty sampling
Budget of m labels

Draw n unlabeled examples

Repeat until we’ve picked m labels

Assign each unlabeled data an “uncertainty score”

Greedily pick the most uncertain example

One of the most commonly used class of heuristics!
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Uncertainty sampling for linear separators
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Active learning bias
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Active learning bias
If we can pick at most m = n/2 labels, with 

overwhelmingly high probability, US pick points such 

that there remains a hypothesis with error > .1!!!

With standard passive learning, error � 0 as n�∞
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Wish list for active learning
Minimum requirement 

Consistency: Generalization error should go to 0 

asymptotically

We’d like more than that:

Fallback guarantee: Convergence rate of error of active 

learning “at least as good” as passive learning

What we’re really after

Rate improvement: Error of active learning decreases much 

faster than for passive learning
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From passive to active
Passive PAC learning

1. Collect data set D of n ≥ 1/ε ( log |H| + log 1/δ ) data points 

and their labels i.i.d. from PX

2. Output consistent hypothesis h

3. With probability at least 1-δ, errortrue(h) ≤ ε

Key idea

Sample n unlabeled data points DX={x1,…,xn} i.i.d. 

Actively query labels until all hypotheses consistent with 

these labels agree on the labels of all unlabeled data
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Why might this work?
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Formalization: “Relevant” hypothesis

Data set D = {(x1,y1),…,(xn,yn)}, Hypothesis space H

Input data: DX = {x1,…,xn}

Relevant hypothesis 

H’(DX)  = H’ = Restriction of H on DX

Formally:

H’ = {h’: DX�{0,1} ∃ h∈ H s.t. ∀ x∈ DX: h’(x)=h(x)}



16

Example: Threshold functions
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Version space
Input data DX = {x1,…,xn}

Partially labeled: Have L = {(xi1
,yi1

),…,(xim
,yim

)}

The (relevant) version space is the set of all relevant 

hypotheses consistent with the labels L

Formally:

Why useful?

Partial labels L imply all remaining labels for DX � |V|=1
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Version space
Input data DX = {x1,…,xn}

Partially labeled: Have L = {(xi1
,yi1

),…,(xim
,yim

)}

The (relevant) version space is the set of all relevant 

hypotheses consistent with the labels L

Formally:

V(DX,L) = V = {h’∈ H’(DX): h’(xij
)=yij

for 1 ≤ j ≤m}

Why useful?

Partial labels L imply all remaining labels for DX � |V|=1
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Example: Binary thresholds
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Pool-based active learning with fallback
1. Collect n ≥ 1/ε ( log |H| + log 1/δ ) unlabeled data 

points DX from PX

2. Actively request labels L until there remains a single 
hypothesis h’∈ H’ that’s consistent with these labels
(i.e., |V(H’,L)| = 1)

3. Output any hypothesis h∈H consistent with the 
obtained labels. With probability ≥ 1-δ
errortrue(h)≤ ε

Get PAC guarantees for active learning
Bounds on #labels for fixed error ε
carry over from passive to active 
���� Fallback guarantee
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Wish list for active learning
Minimum requirement 

Consistency: Generalization error should go to 0 

asymptotically

We’d like more than that:

Fallback guarantee: Convergence rate of error of active 

learning “at least as good” as passive learning

What we’re really after

Rate improvement: Error of active learning decreases much 

faster than for passive learning
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Pool-based active learning with fallback

1. Collect n ≥ 1/ε ( log |H| + log 1/δ ) unlabeled data 

points DX from PX

2. Actively request labels L until there remains a single 

hypothesis h’∈ H’ that’s consistent with these labels

(i.e., |V(H’,L)| = 1)

3. Output any hypothesis h∈H consistent with the 

obtained labels. With probability ≥ 1-δ

errortrue(h)≤ ε
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Example: Threshold functions
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Generalizing binary search [Dasgupta ’04]

Want to shrink the version space (number of 

consistent hypotheses) as quickly as possible.

General (greedy) approach: 

For each unlabeled instance xi compute 

vi,1 = 

vi,0 =

vi = min {vi,1, vi,0 }

Obtain label yi for xi where i = argmaxj {vj}
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Ideal case
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Is it always possible to half the version space?
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Typical case much more benign
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Query trees
A query tree is a rooted, labeled tree on the relevant 

hypothesis H’

Each node is labeled with an input x ∈ DX

Each edge is labeled with {0,1}

Each path from root to hypothesis h’∈ H’ is a labeling 

L such that V(DX,L) = {h’}

Want query trees of minimum height
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Example: Threshold functions
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Example: linear separators (2D)
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Number of labels needed to identify hypothesis

Depends on target hypothesis!

Binary thresholds (on n inputs D_X)

Optimal query tree needs O(log n) labels! ☺

For linear separators in 2D (on n inputs D_X)

For some hypotheses, even optimal tree needs n labels �

On average, optimal query tree needs O(log n) labels! ☺

� Average-case analysis of active learning
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Average case query tree learning

Query tree T

Cost(T) = 1/|H’|  ∑h`∈ H’
depth(h’,T)

Want T* = argminT Cost(T)

Superexponential number of query trees �

Finding the optimal one is hard �
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Greedy construction of query trees [Dasgupta ’04]

Algorithm GreedyTree(DX, L)

V’ = H’(DX)

If V’={h} 

return Leaf(h)

Else

For each unlabeled instance xi compute 

vi,1 = |V’(H’,L ∪ {(xi,1)}|  and vi,0 = |V’(H’,L ∪ {(xi,0)}|

vi = min {vi,1, vi,0}

Let i = argmaxj {vj}

LeftSubTree = GreedyTree(DX, L ∪ {(xi,1)})

RightSubTree = GreedyTree(DX, L ∪ {(xi,0)})

return Node xi with children LeftSubTree (1) and 

RightSubTree(0)
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Near-optimality of greedy tree [Dasgupta ’04]

Theorem: Let  T* = argminT Cost(T)

Then GreedyTree constructs a query tree T such that

Cost(T) = O(log |H’|) Cost(T*)
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Limitations of this algorithm
Often computationally intractable

Finding “most-disagreeing” hypothesis is difficult

No-noise assumption

Will see how we can relax these assumptions in the 

talks next week.
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Bayesian or not Bayesian?
Greedy querying needs at most O(log |H’|) queries 

more than optimal query tree on average

Assumes prior distribution (uniform) on hypotheses

If our assumption is wrong, generalization bound still 

holds! (but might need more labels)

Can also do a pure Bayesian analysis:

Query by Committee algorithm [Freund et al ’97]

Assumes that Nature draws hypotheses from known prior 

distribution
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Query by Committee
Assume prior distribution on hypotheses

Sample a “committee” of 2k hypotheses drawn from 
the prior distribution

Search for an input such that k “members” assign 
label 1, and k “members” assign 0, and query that 
label (“maximal disagreement”)

Theorem [Freund et al ’97]

For linear separators in Rd where both the coefficients 
w and the data X are drawn uniformly from the unit 
sphere, QBC requires exponentially fewer labels than 
passive learning to achieve same error
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Example: Threshold functions
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Wish list for active learning
Minimum requirement 

Consistency: Generalization error should go to 0 

asymptotically

We’d like more than that:

Fallback guarantee: Convergence rate of error of active 

learning “at least as good” as passive learning

What we’re really after

Rate improvement: Error of active learning decreases much 

faster than for passive learning
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Beyond pool-based analysis
Pool-based active learning just one convenient analysis 

technique

Gets around active learning bias by generalizing from a pool 

drawn i.i.d. at random

In pool-based analysis, there are examples where active 

learning does not outperform passive learning

Exciting recent theoretical results show that using a 

more involved analysis, active learning always helps 

(asymptotically) [Balcan, Hanneke, Wortman COLT ’08]

Also other active learning paradigms

E.g.: Active querying (constructing rather than selecting 

inputs)
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What you need to know
Uncertainty sampling

Active learning bias

Pool-based active learning scheme

Relevant hypotheses and version spaces

Generalized binary search algorithm


