Active Learning and Optimized Information Gathering

Lecture 6 - Gaussian Process Optimization

$$
\text { CS } 101.2
$$

Andreas Krause

Announcements

- Homework 1: out tomorrow
- Due Thu Jan 29
- Project
- Proposal due Tue Jan 27
- Office hours
- Come to office hours before your presentation!
- Andreas: Friday 1:30-3pm, 260 Jorgensen
- Ryan: Wednesday 4:00-6:00pm, 109 Moore

Course outline

1. Online decision making

2. Statistical active learning
3. Combinatorial approaches

Recap Bandit problems

- K-arms
- ε_{n} greedy, UCB1 have regret $\mathrm{O}(\log (\mathrm{T}) \mathbf{K})$
- What about infinite arms ($\mathrm{K}=\infty$)
- Have to make assumptions!

Bandits = Noisy function optimization

- We are given black box access to function f $f(x)=$ mean payoff for arm x

- Evaluating f is very expensive
- Want to (quickly) find $x^{*}=\operatorname{argmax}_{x} f(x)$

Bandits with ∞-many arms

Linear

Lipschitz-continuous
(bounded slope)

- Can only hope to perform well if we make some assumptions

Regret depends on complexity

- Bandit linear optimization over R^{n}
- "strong" assumptions
- Regret 0 (${ }^{2 / 3}$
- Bandit problems for optimizing Lipschitz functions
- "weak" assumptions
- Regret $O\left(C(n) T^{n /(n+1)}\right)$
- Curse of dimensionality!
- Today: Flexible (Bayesian) approach for encoding assumptions about function complexity

What if we believe, the function looks like:

Piece-wise linear?

Analytic?
(∞-diff.'able)

Want flexible way to encode assumptions about functions!

Bayesian inference

- Two Bernoulli variables $\mathrm{A}(l a r m)$, $\mathrm{B}($ urglar)
- $P(B=1)=0.1 ; P(A=1 \mid B=1)=0.9 ; P(A=1 \mid B=0)=0.1$
- What is $P(B \mid A)$?

$$
P(B=1 \mid A=1)=\frac{P(B=1, A=1)}{\frac{P(A=1)}{?}}=\frac{P(A=1 \mid B=1) \cdot P(B=1)}{P(A=1 \mid B=1) P(B=1)+P(A=1 \mid B=0) P(B=0)}
$$

- $\mathrm{P}(\mathrm{B}) \quad$ "prior"
- $P(A \mid B)$ "likelihood"
- $P(B \mid A)$ "posterior"

A Bayesian approach

- Bayesian models for functions

Likelihood P(data \| f)

Posterior P(f | data)

Probability of data

- $\left.P\left(y_{1}, \ldots, y_{k}\right)=\int p\left(f, y_{1}, \ldots, y_{k}\right) d p(f)=\int p(f) p\left(y_{1}, \ldots y_{k}\right) f\right) d p(f)$
- Can compute

$$
P\left(y^{\prime} \mid y_{1}, \ldots, y_{k}\right)=\frac{P\left(y^{\prime}, y_{1}, \ldots y_{k}\right)}{P\left(y_{1}, \cdots y_{k}\right)}
$$

Regression with uncertainty about predictions!

How can we do this?

- Want to compute $\mathrm{P}\left(\mathrm{y}^{\prime} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$

$$
P\left(y_{1}, \ldots, y_{k}\right)=\int P\left(f, y_{1}, \ldots, y_{k}\right) d f
$$

- Horribly complicated integral?? :
- Will see how we can compute this
- (more or less) efficiently
- In closed form!
... if $\mathrm{P}(\mathrm{f})$ is a Gaussian Process

Gaussian distribution

- $\sigma=$ Standard deviation

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Bivariate Gaussian distribution

$$
\frac{1}{2 \pi \sqrt{\mathbb{(\Sigma D}}} \exp \left(-\frac{1}{2}(y-\mu)^{T} \sum^{-1}(y-\mu)\right) \quad \Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{21} & \sigma_{2}^{2}
\end{array}\right) \quad \mu=\binom{\mu_{1}}{\mu_{2}}
$$

Multivariate Gaussian distribution

$$
\begin{aligned}
& \mathcal{N}(y ; \Sigma, \mu)=\frac{1}{(2 \pi)^{n / 2} \sqrt{\Sigma \mid} \exp \left(-\frac{1}{2}(y-\mu)^{T} \Sigma^{-1}(y-\mu)\right), ~(y)} \\
& \Sigma=\underbrace{\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 n} \\
\vdots & & & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \ldots & \sigma_{n}^{2}
\end{array}\right)}_{\text {थ } \Sigma \in \mathbb{R}^{n \times n}} \quad \mu=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right) \quad y \in \mathbb{R}^{n}
\end{aligned}
$$

- Joint distribution over n random variables $P\left(Y_{1}, \ldots Y_{n}\right)$
- $\sigma_{j k}=E\left[\left(Y_{j}-\mu_{j}\right)\left(Y_{k}-\mu_{k}\right)\right] \quad \sigma_{j k}>0$: high values of
- Y_{j} and Y_{k} independent $\Leftrightarrow \sigma_{j k}=0 \quad \Rightarrow$ high values of Y_{k}
only true for Gaursions!

Marginalization

- Suppose $\left(Y_{1}, \ldots, Y_{n}\right) \sim N(\mu, \Sigma)$
- What is $\mathrm{P}\left(\mathrm{Y}_{1}\right)$??

$$
y_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)
$$

$\frac{\dot{x}_{1}}{\dot{x}_{2}}$

Conditioning

- Suppose $\left(Y_{1}, \ldots, Y_{n}\right) \sim N(\mu, \Sigma)$
- Decompose as $\left(Y_{A}, Y_{B}\right)$
- What is $P\left(Y_{A} \mid Y_{B}\right)$??

$$
\forall \mu=\binom{\mu_{A}}{\mu_{B}} \Sigma=\left(\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A D} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right)
$$

- $P\left(Y_{A}=y_{A} \mid Y_{B}=y_{B}\right)=N\left(y_{A} ; \mu_{A \mid B}, \Sigma_{A \mid B}\right)$ where

$$
\begin{gathered}
\text { Postern } \\
\Sigma_{A \mid B}=\Sigma_{A A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(y_{B}-\mu_{B}\right) \\
\Sigma_{A \mid B}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{gathered}
$$

- Computable using linear algebra!

Conditioning

High dimensional Gaussians

- Gaussian

- Bivariate Gaussian

- Multivariate Gaussian

$$
\mathcal{N}(y ; \Sigma, \mu)=\frac{1}{(2 \pi)^{n / 2} \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(y-\mu)^{T} \Sigma^{-1}(y-\mu)\right)
$$

- Gaussian Process = " ∞-variate Gaussian"

Gaussian process

- A Gaussian Process (GP) is a
- (infinite) set of random variables, indexed by some set V i.e., for each $x \in V$ there's a $R V Y_{x}$
- Let $A \subseteq V,|A|=\left\{x_{1}, \ldots, x_{k}\right\}<\infty$

Then

$$
Y_{A} \sim N\left(\mu_{A}, \Sigma_{A A}\right)
$$

where
$\Sigma_{A A}=\left(\begin{array}{cccc}\mathcal{K}\left(x_{1}, x_{1}\right) & \mathcal{K}\left(x_{1}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{1}, x_{n}\right) \\ \vdots & & & \vdots \\ \mathcal{K}\left(x_{k}, x_{1}\right) & \mathcal{K}\left(x_{k}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{k}, x_{k}\right)\end{array}\right) \quad \mu_{A}=\left(\begin{array}{c}\mu\left(x_{1}\right) \\ \mu\left(x_{2}\right) \\ \vdots \\ \mu\left(x_{k}\right)\end{array}\right)$

- $\mathrm{K}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{R} \quad$ is called kernel (covariance) function $\mu: \quad V \rightarrow R \quad$ is called mean function

Visualizing GPs

- Typically, only care about "marginals", i.e., $P(y)=N(y ; \mu(x), K(x, x))$

Mean functions

- Can encode prior knowledge
- Typically, one simply assumes

$$
\mu(x)=0
$$

- Will do that here to simplify notation
Not a strong arssumption

Kernel functions

- K must be symmetric

$$
K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right) \text { for all } x, x^{\prime} \in V
$$

- K must be positive definite

For all $A: \Sigma_{A A}$ is positive definite matrix

$$
\begin{aligned}
& \text { Matix } M \in \mathbb{R}^{n \times n} \text { pos. def. } \\
\Leftrightarrow & \forall x \in \mathbb{R}^{n} \\
\Leftrightarrow & \text { All eignualues }>X^{\top} \gg \geq 0
\end{aligned}
$$

- Kernel function K: assumptions about correlation!

Kernel functions: Examples

- Squared exponential kernel $K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2} / h^{2}\right)$

Samples from P(f)

Bandwidth h=. 3

Distance $\left|x-x^{\prime}\right|$
"Coreabiton deceags with dirtance"

Bandwidth h=. 1

Kernel functions: Examples

- Exponential kernel

$$
K\left(x, x^{\prime}\right)=\exp \left(-\left|x-x^{\prime}\right| / h\right)
$$

$$
f_{1} \sim G P(\mu, k)
$$

Bandwidth h=1

Bandwidth h=. 3

Kernel functions: Examples

- Linear kernel:
$K\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$

- Corresponds to linear regression!

Kernel functions: Examples

- Linear kernel with features: $K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)$

$$
\text { E.g., } \Phi(x)=\left[\phi, x, x^{2}\right]
$$

E.g., $\Phi(x)=\sin (x)$

Kernel functions: Examples

- White noise:

$$
K(x, x)=1 ; K\left(x, x^{\prime}\right)=0 \text { for } x^{\prime} \neq x
$$

Constructing kernels from kernels

If $\mathrm{K}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ and $\mathrm{K}_{2}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ are kernel functions then

$$
\alpha \mathrm{K}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)+\beta \mathrm{K}_{2}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \text { is a kernel for } \alpha, \beta>0
$$

$\mathrm{K}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)^{*} \mathrm{~K}_{2}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ is a kernel

GP Regression

- Suppose we know kernel function K
- Get data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Want to predict $y^{\prime}=f\left(x^{\prime}\right)$ for some

1. Construct $P\left(y^{\prime}, y_{1} \ldots y_{n}\right)=N(. ; \mu, \Sigma)$
2. Condition:

$$
\sigma_{x^{\prime}(D}^{2}=\sigma_{x^{\prime}}^{2}+\tau_{x^{\prime}, D} \sum_{00}^{-1} \sum_{D, x^{\prime}}
$$

$$
\begin{aligned}
& P\left(y^{\prime} \mid y \ldots . . y_{m}\right)=N\left(g^{\prime} ; \mu_{x^{\prime} \mid D}, D_{D_{1}} \sigma_{x^{\prime} \mid D}^{2}\right) \\
& \mu_{x^{\prime} \mid D}=\underbrace{\mu_{x^{\prime}}}_{0}+\sum_{x^{\prime}, D} \Sigma_{D D}^{-1}\left(y_{D}-\mu_{D}\right)
\end{aligned}
$$

Linear prediction

- Posterior mean $\mu_{x \mid D}=\underbrace{\sum_{x^{\prime}, D} D_{D, D}}_{\epsilon \mathbb{R}^{k n}}{ }^{-1} y_{D}$

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A O} \\
\Sigma_{B A} & \Sigma_{B O}
\end{array}\right)
$$

- Hence, $\mu_{x^{\prime} \mid D}=\sum_{\substack{\text { Resrassion } \\ \text { Coefficients }}}{ }^{n} w_{i} y_{i}=\mathbb{N}^{\top} y$
- Prediction $\mu_{x^{\prime} \mid D}^{\text {co }}$ depends linearly on inputs y_{i} !
- For fixed data set $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, can precompute weights w_{i}
- Like linear regression, but number of parametersw_i grows with training data
\rightarrow "Nonparametric regression"
\rightarrow Can fit any data set!! ©

Learning parameters

- Example: $K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2} / h^{2}\right)$ Need to specify h!

- In general, kernel function has parameters θ
- Want to learn θ from data

Learning parameters

- Pick parameters that make data most likely!

$$
\begin{gathered}
P(y ; x, \theta)=\frac{1}{(2 \pi)^{n / 2} \sqrt{\left|K_{\theta}\right|}} \exp \left(-\frac{1}{2} y^{T} K_{\theta}^{-1} y\right) \\
\theta^{*} \operatorname{argmax} \underset{\theta}{ } P(y ; x, \theta)=\underset{\theta}{\operatorname{argmex}} \log P(y ; x, \theta) \\
=\text { const } \underbrace{\frac{1}{2} \log \left|k_{\theta}\right|}_{\text {complexity }}-\underbrace{\frac{1}{2} y^{\top} k_{\theta}^{-1} y}_{\text {goodness of }}
\end{gathered}
$$

- $\log P(y \mid \theta)$ differentiable if $K\left(x, x^{\prime}\right)$ is!
\rightarrow Can do gradient descent, conjugate gradient, etc.
- Tends to work well (not over- or underfit) in practice!

Matlab demo

- [Rasmussen \& Williams, Gaussian Processes for Machine Learning]
- http://www.gaussianprocess.org/gpml/

[^0]
Gaussian process

- A Gaussian Process (GP) is a
- (infinite) set of random variables, indexed by some set V i.e., for each $x \in V$ there's a $R V Y_{x}$
- Let $A \subseteq V,|A|=\left\{x_{1}, \ldots, x_{k}\right\}<\infty$

Then

$$
Y_{A} \sim N\left(\mu_{A}, \Sigma_{A A}\right)
$$

where
$\Sigma_{A A}=\left(\begin{array}{cccc}\mathcal{K}\left(x_{1}, x_{1}\right) & \mathcal{K}\left(x_{1}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{1}, x_{n}\right) \\ \vdots & & & \vdots \\ \mathcal{K}\left(x_{k}, x_{1}\right) & \mathcal{K}\left(x_{k}, x_{2}\right) & \ldots & \mathcal{K}\left(x_{k}, x_{k}\right)\end{array}\right) \quad \mu_{A}=\left(\begin{array}{c}\mu\left(x_{1}\right) \\ \mu\left(x_{2}\right) \\ \vdots \\ \mu\left(x_{k}\right)\end{array}\right)$

- $\mathrm{K}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{R} \quad$ is called kernel (covariance) function $\mu: \quad V \rightarrow R \quad$ is called mean function

GPs over other sets

- GP is collection of random variables, indexed by set V
- So far: Have seen GPs over V = R
- Can define GPs over
- Text (strings)
- Graphs
- Sets
- ...
- Only need to choose appropriate kernel function

Example: Using GPs to model spatial phenomena

Other extensions (won't cover here)

- GPs for classification
- Nonparametric generalization of logistic regression
- Like SVMs (but give confidence on predicted labels!)
- GPs for modeling non-Gaussian phenomena
- Model count data over space, ...
- Active set methods for fast inference

Still active research area in machine learning

Bandits = Noisy function optimization

- We are given black box access to function f

- Evaluating fis very expensive
- Want to (quickly) find $x^{*}=\operatorname{argmax}_{x} f(x)$
- Idea: Assume f is a sample from a Gaussian Process!
\rightarrow Gaussian Process optimization
(a.k.a.: Response surface optimization)

Upper confidence bound approach

- $\operatorname{UCB}(x \mid D)=\mu(x \mid D)+\underbrace{2 *} \sigma(x \mid D)$
- Pick point $x^{*}=\operatorname{argmax}_{x} U C B(x \mid D)$

Matlab demo

Properties

- Implicitly trades off exploration and exploitation
- Exploits prior knowledge about function
- Can converge to optimal solution very quickly! :)
- Seems to work well in many applications
- Can perform poorly if our prior assumptions are wrong $)^{*}$

What you need to know

- GPs =
- Nonparametric generalization of linear regression
- Flexible ways to encode prior assumptions about mean payoffs
- Definition of GPs
- Properties of multivariate Gaussians (marginalization, conditioning)
- Gaussian Process optimization
- Combination of regression and optimization
- Use confidence bands for selecting samples

[^0]: Carl Edward Rasmussen and Christopher K. I. Williams

