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Announcements
Homework 1: out tomorrow

Due Thu Jan 29

Project

Proposal due Tue Jan 27

Office hours

Come to office hours before your presentation!

Andreas: Friday 1:30-3pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches
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Recap Bandit problems

K-arms

εn greedy, UCB1 have regret O(log(T) K)

What about infinite arms (K=∞)

Have to make assumptions!

…

p1 p2 p3 pk
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Bandits = Noisy function optimization

We are given black box access to function f

f(x) = mean payoff for arm x

Evaluating f is very expensive

Want to (quickly) find x* = argmaxx f(x)

fx y = f(x) + noise
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Bandits with ∞-many arms

Can only hope to perform well if we make some 

assumptions

Linear Lipschitz-continuous

(bounded slope)

f(x)=wT x
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Regret depends on complexity
Bandit linear optimization over Rn

“strong” assumptions

Regret O(T2/3 n)

Bandit problems for optimizing Lipschitz functions

“weak” assumptions

Regret O(C(n) Tn/(n+1))

Curse of dimensionality!

Today: Flexible (Bayesian) approach for encoding 

assumptions about function complexity



8

What if we believe, the function looks like:

Want flexible way to encode assumptions about functions!

Piece-wise linear? Analytic?

(∞∞∞∞-diff.’able)
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Bayesian inference
Two Bernoulli variables A(larm), B(urglar)

P(B=1) = 0.1; P(A=1 | B=1)=0.9; P(A=1 | B=0)=0.1

What is P(B | A)?

P(B) “prior”

P(A | B) “likelihood”

P(B | A) “posterior”
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A Bayesian approach

Bayesian models for functions

+

+

+
+

Uff… Why is this useful?

Likelihood P(data | f)

Posterior P(f | data)

Prior P(f)



11

Probability of data
P(y1,…,yk) =

Can compute 

P(y’ | y1,…,yk) =
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Regression with uncertainty about predictions!

+

+

+
+
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How can we do this?
Want to compute P(y’ | y1,…,yk)

P(y1,…,yk) = ∫ P(f, y1,…,yk) df

Horribly complicated integral?? �

Will see how we can compute this 

(more or less) efficiently

In closed form!

… if P(f) is a Gaussian Process
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Gaussian distribution

σ = Standard deviation

µ = mean
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Bivariate Gaussian distribution
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Multivariate Gaussian distribution

Joint distribution over n random variables P(Y1,…Yn)

σjk = E[ (Yj – µj) (Yk - µk) ]

Yj and Yk independent � σjk=0
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Marginalization
Suppose  (Y1,…,Yn) ~ N( µ, Σ)

What is P(Y1)??

More generally: Let A={i1,…,ik} ⊆ {1,…,N}

Write YA = (Yi1
,…,Yik

)

YA ~ N( µA, ΣAA)
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Conditioning
Suppose (Y1,…,Yn) ~ N( µ, Σ)

Decompose as (YA,YB)

What is P(YA | YB)??

P(YA = yA| YB = yB) = N(yA; µA|B, ΣA|B) where

Computable using linear algebra!
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Conditioning
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High dimensional Gaussians
Gaussian

Bivariate Gaussian

Multivariate Gaussian

Gaussian Process = “∞-variate Gaussian”
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Gaussian process
A Gaussian Process (GP) is a 

(infinite) set of random variables, indexed by some set V

i.e., for each x∈ V there’s a RV Yx

Let A ⊆ V, |A|= {x1,…,xk} < ∞
Then 

YA ~ N(µA,ΣAA)

where

K: V× V → R is called kernel (covariance) function

µ:        V → R is called mean function
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Visualizing GPs

Typically, only care about “marginals”, i.e.,

P(y) = N(y; µ(x), K(x,x))

x∈∈∈∈V
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Mean functions
Can encode prior knowledge

Typically, one simply assumes

µ(x) = 0

Will do that here to simplify notation
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Kernel functions
K must be symmetric

K(x,x’) = K(x’,x) for all x, x’

K must be positive definite

For all A: ΣAA is positive definite matrix

Kernel function K: assumptions about correlation!
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Kernel functions: Examples
Squared exponential kernel

K(x,x’) = exp(-(x-x’)2/h2)
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Kernel functions: Examples
Exponential kernel

K(x,x’) = exp(-|x-x’|/h)
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Kernel functions: Examples
Linear kernel:
K(x,x’) = xT x’

Corresponds to linear regression!
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Kernel functions: Examples
Linear kernel with features:

K(x,x’) = Φ(x)TΦ(x’)
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Kernel functions: Examples
White noise:

K(x,x) = 1; K(x,x’) = 0 for x’ ≠ x
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Constructing kernels from kernels

If K1(x,x’) and K2(x,x’) are kernel functions then

α K1(x,x’) + β K2(x,x’) is a kernel for α,β > 0

K1(x,x’)*K2(x,x’) is a kernel
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GP Regression
Suppose we know kernel function K

Get data (x1,y1),…,(xn,yn)

Want to predict y’ = f(x’) for some new x’
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Linear prediction
Posterior mean µx`| D = Σx`,DΣD,D

-1 yD

Hence, µx`|D = ∑i=1
n wi yi

Prediction µx`|D depends linearly on inputs yi!

For fixed data set D = {(x1,y1),…,(xn,yn)}, can 

precompute weights wi

Like linear regression, but number of parameters w_i

grows with training data

�“Nonparametric regression”

� Can fit any data set!! ☺
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Learning parameters
Example: K(x,x’) = exp(-(x-x’)2/h2)

Need to specify h!

In general, kernel function has parameters θ

Want to learn θ from data

+

+
+

+

+

+

h too small

“overfit”

+
+

+

+
+

+

+

h too large

“underfit”

+

+

+
+

+

+

+

h “just right”

+
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Learning parameters
Pick parameters that make data most likely!

log P(y | θ) differentiable if K(x,x’) is!

�Can do gradient descent, conjugate gradient, etc.

Tends to work well (not over- or underfit) in practice!
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Matlab demo
[Rasmussen & Williams, Gaussian Processes for 

Machine Learning]

http://www.gaussianprocess.org/gpml/
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Gaussian process
A Gaussian Process (GP) is a 

(infinite) set of random variables, indexed by some set V

i.e., for each x∈ V there’s a RV Yx

Let A ⊆ V, |A|= {x1,…,xk} < ∞
Then 

YA ~ N(µA,ΣAA)

where

K: V× V → R is called kernel (covariance) function

µ:        V → R is called mean function
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GPs over other sets
GP is collection of random variables, indexed by set V

So far: Have seen GPs over V = R

Can define GPs over

Text (strings)

Graphs

Sets

…

Only need to choose appropriate kernel function
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Predicted temperature 
throughout the space
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Example: Using GPs to model spatial phenomena
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of temperature sensors
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Other extensions (won’t cover here)

GPs for classification

Nonparametric generalization of logistic regression

Like SVMs (but give confidence on predicted labels!)

GPs for modeling non-Gaussian phenomena

Model count data over space, …

Active set methods for fast inference

…

Still active research area in machine learning
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Bandits = Noisy function optimization

We are given black box access to function f

Evaluating f is very expensive

Want to (quickly) find x* = argmaxx f(x)

Idea: Assume f is a sample from a Gaussian Process!

� Gaussian Process optimization

(a.k.a.: Response surface optimization)

fx y = f(x) + noise
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Upper confidence bound approach

UCB(x | D) = µ(x | D) + 2*σ(x | D)

Pick point x* = argmaxx UCB(x | D)

x∈∈∈∈V

+
+

+

+

+
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Matlab demo
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Properties
Implicitly trades off exploration and exploitation

Exploits prior knowledge about function

Can converge to optimal solution very quickly! ☺

Seems to work well in many applications

Can perform poorly if our prior assumptions are 

wrong �
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What you need to know
GPs =

Nonparametric generalization of linear regression

Flexible ways to encode prior assumptions about mean payoffs

Definition of GPs

Properties of multivariate Gaussians (marginalization, 

conditioning)

Gaussian Process optimization

Combination of regression and optimization

Use confidence bands for selecting samples


