Efficient Algorithms for Online Decision Problems

Dave Buchfuhrer

January 15, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In this model, we have n experts

In this model, we have n experts

<i>e</i> ₁ <i>e</i> ₂	e ₃	e_4
---	----------------	-------

In this model, we have n experts

<i>e</i> ₁ <i>e</i> ₂	e ₃	e_4
---	----------------	-------

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Every round, we must pick an expert

- In this model, we have n experts
- Every round, we must pick an expert

e_1	e ₂	e ₃	e ₄
\checkmark			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e ₄
\checkmark			

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e ₄
.2	.5	.1	.8

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e ₄
.2	.5	.1	.8
		\checkmark	

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e ₄
.2	.5	.1	.8
.5	.3	.6	0

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	<i>e</i> 4
.2	.5	.1	.8
.5	.3	.6	0
			\checkmark

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e4
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e ₄
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
		\checkmark	

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_1	e ₂	e ₃	e4
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
.1	.6	.8	.9

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed
- The goal is to minimize the total cost incurred

e_1	e ₂	e ₃	e4
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
.1	.6	.8	.9

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed
- The goal is to minimize the total cost incurred

e_1	e ₂	e ₃	e4			
.2	.5	.1	.8			
.5	.3	.6	0			
.9	.4	.2	.3			
.1	.6	.8	.9			
Total cost: 1.9						

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□▶ ▲■▶ ★ ■▶ ★ ■▶ = ■ - のへで

$$e_1 \mid e_2 \mid e_3 \mid e_4$$

イロト 不得 トイヨト イヨト

3

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

I'm feeling good about this one!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Damnit!

e_1	<i>e</i> ₂	e ₃	e4	
1	0	0	0	
0	1	0	0	$(\dot{\cdot})$
0	0	1	0	(\dot{z})
0	0	0	1	

At each step t in follow the leader, we can

 $1. \ \mbox{Pick}$ the expert with the best total so far

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2. Fail to do so

At each step t in follow the leader, we can

- 1. Pick the expert with the best total so far
- 2. Fail to do so

Case 1: we increase our total cost by at most the same amount as the best strategy $% \left({{{\left[{{{\left[{{{c}} \right]}} \right]}_{i}}}_{i}}} \right)$
At each step t in follow the leader, we can

- 1. Pick the expert with the best total so far
- 2. Fail to do so

Case 1: we increase our total cost by at most the same amount as the best strategy

Case 2: we increase our total cost by at most 1 more than the cost increase of the best strategy

$e_1 \mid e_2 \mid e_3 \mid e_4 \mid$ guess leader

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline e_1 & e_2 & e_3 & e_4 & guess & leader \\ \hline \checkmark & & & & & & & & \\ \hline \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)
\checkmark					

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	e ₁ (.9)	<mark>e</mark> 4 (.6)

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	<mark>e1</mark> (.9)	e 4 (.6)
			\checkmark		

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	e ₁ (.9)	<i>e</i> ₄ (.6)
.3	.6	.8	1	<mark>e4</mark> (1.9)	e ₁ (1.2)

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	<i>e</i> ₁ (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	e ₁ (.9)	<i>e</i> ₄ (.6)
.3	.6	.8	1	e ₄ (1.9)	<i>e</i> ₁ (1.2)
\checkmark					

e_1	<i>e</i> ₂	e ₃	e ₄	guess	leader
.2	.5	1	.5	e_1 (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	<mark>e1</mark> (.9)	e 4 (.6)
.3	.6	.8	1	e ₄ (1.9)	<i>e</i> ₁ (1.2)
.1	.6	.4	0	e_1 (2.0)	e_1 (1.3)

e_1	e ₂	e ₃	e ₄	guess	leader
.2	.5	1	.5	<i>e</i> ₁ (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	e ₁ (.9)	e 4 (.6)
.3	.6	.8	1	<mark>e</mark> 4 (1.9)	e ₁ (1.2)
.1	.6	.4	0	e_1 (2.0)	e_1 (1.3)
\checkmark					

e_1	e ₂	e ₃	<i>e</i> 4	guess	leader
.2	.5	1	.5	<i>e</i> ₁ (.2)	<i>e</i> ₁ (.2)
.7	.2	.3	.1	<mark>e</mark> 1 (.9)	e 4 (.6)
.3	.6	.8	1	e ₄ (1.9)	<i>e</i> ₁ (1.2)
.1	.6	.4	0	e_1 (2.0)	e_1 (1.3)
.5	.2	.3	.4	<i>e</i> ₁ (2.5)	e_1 (1.8)

So the total cost of Follow the Leader is at most

best $\cos t + \#$ times leader guess was wrong

So the total cost of Follow the Leader is at most

best $\cos t + \#$ times leader guess was wrong

or in other words,

final leader's $\cos t + \#$ times the leader guess changed

k-Armed Bandit Connection

Confidence intervals helped with k-armed bandits

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

k-Armed Bandit Connection

- Confidence intervals helped with k-armed bandits
- Here, we'll just fudge the numbers to prevent leader changes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

k-Armed Bandit Connection

- Confidence intervals helped with k-armed bandits
- Here, we'll just fudge the numbers to prevent leader changes

We add a random perturbation pert[i] to each expert i

Adding Randomness

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Adding Randomness

e_1	e ₂	e ₃	e_4
3	10	2	8
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Too Much Randomness?

e_1	e ₂	e ₃	e ₄
3	10	2	8
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

<□ > < @ > < E > < E > E のQ @

Too Much Randomness?

e_1	e ₂	e ₃	e_4
3	10	2	8
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

<□ > < @ > < E > < E > E のQ @

Getting it Right

In order to do well, we add a random variable to each expert with exponential density function

 $\epsilon e^{\epsilon x}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for negative perturbations x

In order to do well, we add a random variable to each expert with exponential density function

 $\epsilon e^{\epsilon x}$

for negative perturbations x We hope that

 The expected number of leader changes is small compared to the final leader cost

In order to do well, we add a random variable to each expert with exponential density function

 $\epsilon e^{\epsilon x}$

for negative perturbations x We hope that

The expected number of leader changes is small compared to the final leader cost

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The final leader cost is close to the min cost

Number of Leader Changes

We wish to show that

 $E[\# \text{ changes of leader}] \leq \epsilon E[\text{total cost}]$

Number of Leader Changes

We wish to show that

 $E[\# \text{ changes of leader}] \leq \epsilon E[\text{total cost}]$

which shows us that

 $E[\text{total cost}] \leq E[\text{final leader cost}] + \epsilon E[\text{total cost}]$

Number of Leader Changes

We wish to show that

$$E[\# \text{ changes of leader}] \leq \epsilon E[\text{total cost}]$$

which shows us that

 $E[\text{total cost}] \le E[\text{final leader cost}] + \epsilon E[\text{total cost}]$ giving us

$$E[\text{total cost}] \le \frac{1}{1-\epsilon} E[\text{final leader cost}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 If expert *i* is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations

- If expert *i* is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader

- If expert *i* is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader
- Since the exponential distribution is memoryless, the chances that it's c smaller than necessary only depend on c

- If expert *i* is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader
- Since the exponential distribution is memoryless, the chances that it's c smaller than necessary only depend on c

• This chance happens to be greater than $1 - \epsilon c$

Leader Change

So there's only an *ϵc* chance of the leader being leader by less than a margin of *c*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Leader Change

So there's only an *ϵc* chance of the leader being leader by less than a margin of *c*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let c_t be the current leader's next cost at time t

$$\blacktriangleright$$
 $\sum_t c_t = \text{total cost}$

Leader Change

So there's only an *ϵc* chance of the leader being leader by less than a margin of *c*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let c_t be the current leader's next cost at time t
- $\sum_t c_t = \text{total cost}$
- So total number of changes is ϵ (total cost)

This leaves us with the need to bound E[final leader cost], as the final leader is not necessarily optimal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This leaves us with the need to bound E[final leader cost], as the final leader is not necessarily optimal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Our leader can only be as much worse as the biggest perturbation
This leaves us with the need to bound E[final leader cost], as the final leader is not necessarily optimal

- Our leader can only be as much worse as the biggest perturbation
- Because the distribution is exponential, the expected max perturbation grows logarithmically

This leaves us with the need to bound E[final leader cost], as the final leader is not necessarily optimal

- Our leader can only be as much worse as the biggest perturbation
- Because the distribution is exponential, the expected max perturbation grows logarithmically

• In particular, we get a bound of $(1 + \ln n)/\epsilon$

Combining the bounds on the number of wrong guesses with the bound on the error in our final guess, we get

$$E[\text{total cost}](1-\epsilon) \le \min \text{ cost} + \frac{\ln n}{\epsilon}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combining the bounds on the number of wrong guesses with the bound on the error in our final guess, we get

$$E[\text{total cost}](1-\epsilon) \le \min \text{ cost} + \frac{\ln n}{\epsilon}$$

which shows an interesting tradeoff between ϵ and $1-\epsilon$ when balancing the amount of randomness

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

e_1	<i>e</i> ₂	e ₃	e ₄
9	3	6	4
1	0	1	0

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

e_1	<i>e</i> ₂	e ₃	e ₄
0	3	2	1
1	0	1	0
1	0	1	0

<□> <圖> < E> < E> E のQ@

e_1	<i>e</i> ₂	e ₃	e ₄
6	2	1	4
1	0	1	0
1	0	1	0
1	0	1	0

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

▶ Fix some $D \subset \mathbb{R}^n$

- Fix some $D \subset \mathbb{R}^n$
- At time t, choose some $d_t \in D$

- Fix some $D \subset \mathbb{R}^n$
- At time t, choose some $d_t \in D$
- After d_t is chosen, a vector s_t is revealed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Fix some $D \subset \mathbb{R}^n$
- At time t, choose some $d_t \in D$
- After d_t is chosen, a vector s_t is revealed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The cost incurred is $d_t \cdot s_t$

- Fix some $D \subset \mathbb{R}^n$
- At time t, choose some $d_t \in D$
- After d_t is chosen, a vector s_t is revealed
- The cost incurred is $d_t \cdot s_t$
- We wish to compete with the best fixed choice $d_t = d \ \forall t$

- Fix some $D \subset \mathbb{R}^n$
- At time t, choose some $d_t \in D$
- After d_t is chosen, a vector s_t is revealed
- The cost incurred is $d_t \cdot s_t$
- We wish to compete with the best fixed choice $d_t = d \ \forall t$
- In the 4-player expert case,

D = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

and the s_t are the cost vectors

Algorithm for Linear Generalization

With this generalization, the same algorithm works:

- Choose a random vector p_t
- ▶ Find the $d \in D$ that minimizes $d \cdot p_t + \sum_i d \cdot s_i$ and choose it

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The linear generalization covers many interesting online optimization problems, including online shortest path:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The linear generalization covers many interesting online optimization problems, including online shortest path:

• We are given a graph with 2 labeled vertices s and t

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The linear generalization covers many interesting online optimization problems, including online shortest path:

• We are given a graph with 2 labeled vertices s and t

Every round, we pick a path from s to t

The linear generalization covers many interesting online optimization problems, including online shortest path:

▶ We are given a graph with 2 labeled vertices *s* and *t*

- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed

The linear generalization covers many interesting online optimization problems, including online shortest path:

- ▶ We are given a graph with 2 labeled vertices *s* and *t*
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths

The linear generalization covers many interesting online optimization problems, including online shortest path:

- ▶ We are given a graph with 2 labeled vertices *s* and *t*
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths
- We are competing against the optimal fixed path choice

The linear generalization covers many interesting online optimization problems, including online shortest path:

- ▶ We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths
- We are competing against the optimal fixed path choice
- ► Here d ∈ D is a vector indicating the edges contained in a path, and s_t represents the edge weights

Follow the Leader

Follow the Leader

Any Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで