Efficient Algorithms for Online Decision Problems

Dave Buchfuhrer

January 15, 2009

The Model

- In this model, we have n
experts

The Model

- In this model, we have n

experts

The Model

- In this model, we have n
 experts
- Every round, we must pick an expert

The Model

- In this model, we have n experts
- Every round, we must pick
 an expert

The Model

- In this model, we have n experts
- Every round, we must pick
 an expert
- After this choice, the cost of each expert is revealed

The Model

- In this model, we have n experts
- Every round, we must pick

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8

- After this choice, the cost of each expert is revealed

The Model

- In this model, we have n experts
- Every round, we must pick an expert

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
		\checkmark	

- After this choice, the cost of each expert is revealed

The Model

- In this model, we have n experts
- Every round, we must pick an expert

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
.5	.3	.6	0

- After this choice, the cost of each expert is revealed

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
		\checkmark	

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
.1	.6	.8	.9

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed
- The goal is to minimize the

e_{1}	e_{2}	e_{3}	e_{4}
.2	.5	.1	.8
.5	.3	.6	0
.9	.4	.2	.3
.1	.6	.8	.9

The Model

- In this model, we have n experts
- Every round, we must pick an expert
- After this choice, the cost of each expert is revealed
- The goal is to minimize the total cost incurred

Total cost: 1.9

Limit to Single Expert

Limit to Single Expert

e_{1}	e_{2}	e_{3}	e_{4}
1	0	1	1
1	1	1	1

Purely Random Strategies are Bad

e_{1}	e_{2}	e_{3}	e_{4}
1	1	1	0
1	1	1	0
1	1	1	0

Purely Random Strategies are Bad

e_{1}	e_{2}	e_{3}	e_{4}
1	1	1	0
1	1	1	0
1	1	1	0

Purely Random Strategies are Bad

e_{1}	e_{2}	e_{3}	e_{4}
1	1	1	0
1	1	1	0
1	1	1	0

Purely Random Strategies are Bad

e_{1}	e_{2}	e_{3}	e_{4}
1	1	1	0
1	1	1	0
1	1	1	0

Purely Random Strategies are Bad

e_{1}	e_{2}	e_{3}	e_{4}
1	1	1	0
1	1	1	0
1	1	1	0

Following the Best Track Record

e_{1}	e_{2}	e_{3}	e_{4}

Following the Best Track Record

Following the Best Track Record

Following the Best Track Record

Following the Best Track Record

e_{1}	e_{2}	e_{e}	
1	0	0	0
	0	0	0
0	1	0	0

Following the Best Track Record

e_{1}	e_{2}	e_{3}	e_{4}	
1	0	0	0	\odot
0	1	0	0	\odot
		$\cdot)$		

Following the Best Track Record

e_{1}	e_{2}	e_{3}	e_{4}	
1	0	0	0	\odot
0	1	0	0	\odot
0	0	1	0	\odot

I'm feeling good about this one!

e_{1}	e_{2}	e_{3}	e_{4}	
1	0	0	0	\odot
0	1	0	0	\odot
0	0	1	0	\odot

Damnit!

e_{1}	e_{2}	e_{3}	e_{4}	
1	0	0	0	\because
0	1	0	0	\because
0	0	1	0	\because
0	0	0	1	\because

Failure of Follow the Leader

At each step t in follow the leader, we can

1. Pick the expert with the best total so far
2. Fail to do so

Failure of Follow the Leader

At each step t in follow the leader, we can

1. Pick the expert with the best total so far
2. Fail to do so

Case 1: we increase our total cost by at most the same amount as the best strategy

Failure of Follow the Leader

At each step t in follow the leader, we can

1. Pick the expert with the best total so far
2. Fail to do so

Case 1: we increase our total cost by at most the same amount as the best strategy
Case 2: we increase our total cost by at most 1 more than the cost increase of the best strategy

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader

Example

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$

Example

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
			\checkmark		

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
.3	.6	.8	1	$e_{4}(1.9)$	$e_{1}(1.2)$

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
.3	.6	.8	1	$e_{4}(1.9)$	$e_{1}(1.2)$
\checkmark					

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
.3	.6	.8	1	$e_{4}(1.9)$	$e_{1}(1.2)$
.1	.6	.4	0	$e_{1}(2.0)$	$e_{1}(1.3)$

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
.3	.6	.8	1	$e_{4}(1.9)$	$e_{1}(1.2)$
.1	.6	.4	0	$e_{1}(2.0)$	$e_{1}(1.3)$
\checkmark					

Example

e_{1}	e_{2}	e_{3}	e_{4}	guess	leader
.2	.5	1	.5	$e_{1}(.2)$	$e_{1}(.2)$
.7	.2	.3	.1	$e_{1}(.9)$	$e_{4}(.6)$
.3	.6	.8	1	$e_{4}(1.9)$	$e_{1}(1.2)$
.1	.6	.4	0	$e_{1}(2.0)$	$e_{1}(1.3)$
.5	.2	.3	.4	$e_{1}(2.5)$	$e_{1}(1.8)$

Reason for Failure

So the total cost of Follow the Leader is at most
best cost + \# times leader guess was wrong

Reason for Failure

So the total cost of Follow the Leader is at most
best cost + \# times leader guess was wrong
or in other words,
final leader's cost + \# times the leader guess changed

k-Armed Bandit Connection

- Confidence intervals helped with k-armed bandits

k-Armed Bandit Connection

- Confidence intervals helped with k-armed bandits
- Here, we'll just fudge the numbers to prevent leader changes

k-Armed Bandit Connection

- Confidence intervals helped with k-armed bandits
- Here, we'll just fudge the numbers to prevent leader changes
- We add a random perturbation pert [i] to each expert i

Adding Randomness

e_{1}	e_{2}	e_{3}	e_{4}
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Adding Randomness

e_{1}	e_{2}	e_{3}	e_{4}
3	10	2	8
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Too Much Randomness?

e_{1}	e_{2}	e_{3}	e_{4}
3	10	2	8
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

Too Much Randomness?

e_{1}	e_{2}	e_{3}	e_{4}
3	10	2	8
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

Getting it Right

In order to do well, we add a random variable to each expert with exponential density function

$$
\epsilon e^{\epsilon X}
$$

for negative perturbations x

Getting it Right

In order to do well, we add a random variable to each expert with exponential density function

$$
\epsilon e^{\epsilon X}
$$

for negative perturbations x
We hope that

- The expected number of leader changes is small compared to the final leader cost

Getting it Right

In order to do well, we add a random variable to each expert with exponential density function

$$
\epsilon e^{\epsilon X}
$$

for negative perturbations x
We hope that

- The expected number of leader changes is small compared to the final leader cost
- The final leader cost is close to the min cost

Number of Leader Changes

We wish to show that

$$
E[\# \text { changes of leader }] \leq \epsilon E[\text { total cost }]
$$

Number of Leader Changes

We wish to show that

$$
E[\# \text { changes of leader }] \leq \epsilon E[\text { total cost }]
$$

which shows us that

$$
E[\text { total cost }] \leq E[\text { final leader cost }]+\epsilon E[\text { total cost }]
$$

Number of Leader Changes

We wish to show that

$$
E[\# \text { changes of leader }] \leq \epsilon E[\text { total cost }]
$$

which shows us that

$$
E[\text { total cost }] \leq E[\text { final leader cost }]+\epsilon E[\text { total cost }]
$$

giving us

$$
E[\text { total cost }] \leq \frac{1}{1-\epsilon} E[\text { final leader cost }]
$$

Chance of Changing Leader

- If expert i is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations

Chance of Changing Leader

- If expert i is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader

Chance of Changing Leader

- If expert i is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader
- Since the exponential distribution is memoryless, the chances that it's c smaller than necessary only depend on c

Chance of Changing Leader

- If expert i is the current leader, consider his current costs, as compared to the costs of all other experts, as well as their perturbations
- Given this info, i must have a sufficiently small perturbation to be leader
- Since the exponential distribution is memoryless, the chances that it's c smaller than necessary only depend on c
- This chance happens to be greater than $1-\epsilon C$

Leader Change

- So there's only an ϵc chance of the leader being leader by less than a margin of c

Leader Change

- So there's only an ϵc chance of the leader being leader by less than a margin of c
- Let c_{t} be the current leader's next cost at time t
- $\sum_{t} c_{t}=$ total cost

Leader Change

- So there's only an ϵc chance of the leader being leader by less than a margin of c
- Let c_{t} be the current leader's next cost at time t
- $\sum_{t} c_{t}=$ total cost
- So total number of changes is ϵ (total cost)

Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the final leader is not necessarily optimal

Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the final leader is not necessarily optimal

- Our leader can only be as much worse as the biggest perturbation

Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the final leader is not necessarily optimal

- Our leader can only be as much worse as the biggest perturbation
- Because the distribution is exponential, the expected max perturbation grows logarithmically

Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the final leader is not necessarily optimal

- Our leader can only be as much worse as the biggest perturbation
- Because the distribution is exponential, the expected max perturbation grows logarithmically
- In particular, we get a bound of $(1+\ln n) / \epsilon$

Tying it Together

Combining the bounds on the number of wrong guesses with the bound on the error in our final guess, we get

$$
E[\text { total cost }](1-\epsilon) \leq \min \operatorname{cost}+\frac{\ln n}{\epsilon}
$$

Tying it Together

Combining the bounds on the number of wrong guesses with the bound on the error in our final guess, we get

$$
E[\text { total } \operatorname{cost}](1-\epsilon) \leq \min \operatorname{cost}+\frac{\ln n}{\epsilon}
$$

which shows an interesting tradeoff between ϵ and $1-\epsilon$ when balancing the amount of randomness

Refreshing the Randomness

Refreshing the Randomness

e_{1}	e_{2}	e_{3}	e_{4}
9	3	6	4
1	0	1	0

Refreshing the Randomness

e_{1}	e_{2}	e_{3}	e_{4}
0	3	2	1
1	0	1	0
1	0	1	0

Refreshing the Randomness

e_{1}	e_{2}	e_{3}	e_{4}
6	2	1	4
1	0	1	0
1	0	1	0
1	0	1	0

Refreshing the Randomness

e_{1}	e_{2}	e_{3}	e_{4}
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$
- At time t, choose some $d_{t} \in D$

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$
- At time t, choose some $d_{t} \in D$
- After d_{t} is chosen, a vector s_{t} is revealed

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$
- At time t, choose some $d_{t} \in D$
- After d_{t} is chosen, a vector s_{t} is revealed
- The cost incurred is $d_{t} \cdot s_{t}$

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$
- At time t, choose some $d_{t} \in D$
- After d_{t} is chosen, a vector s_{t} is revealed
- The cost incurred is $d_{t} \cdot s_{t}$
- We wish to compete with the best fixed choice $d_{t}=d \forall t$

Linear Generalization

- Fix some $D \subset \mathbb{R}^{n}$
- At time t, choose some $d_{t} \in D$
- After d_{t} is chosen, a vector s_{t} is revealed
- The cost incurred is $d_{t} \cdot s_{t}$
- We wish to compete with the best fixed choice $d_{t}=d \forall t$
- In the 4-player expert case,

$$
D=(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)
$$

and the s_{t} are the cost vectors

Algorithm for Linear Generalization

With this generalization, the same algorithm works:

- Choose a random vector p_{t}
- Find the $d \in D$ that minimizes $d \cdot p_{t}+\sum_{i} d \cdot s_{i}$ and choose it

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths
- We are competing against the optimal fixed path choice

Other Problems in this Framework

The linear generalization covers many interesting online optimization problems, including online shortest path:

- We are given a graph with 2 labeled vertices s and t
- Every round, we pick a path from s to t
- Afterward, all edge weights are revealed
- We wish to minimize the sum of all path lengths
- We are competing against the optimal fixed path choice
- Here $d \in D$ is a vector indicating the edges contained in a path, and s_{t} represents the edge weights

Online Shortest Paths Example

Follow the Leader

Follow the Leader

Any Questions?

