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I Every round, we must pick
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I After this choice, the cost of
each expert is revealed

I The goal is to minimize the
total cost incurred
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Failure of Follow the Leader

At each step t in follow the leader, we can

1. Pick the expert with the best total so far

2. Fail to do so

Case 1: we increase our total cost by at most the same amount as
the best strategy
Case 2: we increase our total cost by at most 1 more than the cost
increase of the best strategy
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I Here, we’ll just fudge the numbers to prevent leader changes

I We add a random perturbation pert[i ] to each expert i
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Getting it Right

In order to do well, we add a random variable to each expert with
exponential density function

εeεx

for negative perturbations x

We hope that

I The expected number of leader changes is small compared to
the final leader cost

I The final leader cost is close to the min cost



Getting it Right

In order to do well, we add a random variable to each expert with
exponential density function

εeεx

for negative perturbations x
We hope that

I The expected number of leader changes is small compared to
the final leader cost

I The final leader cost is close to the min cost



Getting it Right

In order to do well, we add a random variable to each expert with
exponential density function

εeεx

for negative perturbations x
We hope that

I The expected number of leader changes is small compared to
the final leader cost

I The final leader cost is close to the min cost



Number of Leader Changes

We wish to show that

E [# changes of leader] ≤ εE [total cost]

which shows us that

E [total cost] ≤ E [final leader cost] + εE [total cost]

giving us

E [total cost] ≤ 1

1− ε
E [final leader cost]
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Chance of Changing Leader

I If expert i is the current leader, consider his current costs, as
compared to the costs of all other experts, as well as their
perturbations

I Given this info, i must have a sufficiently small perturbation
to be leader

I Since the exponential distribution is memoryless, the chances
that it’s c smaller than necessary only depend on c

I This chance happens to be greater than 1− εc
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Leader Change

I So there’s only an εc chance of the leader being leader by less
than a margin of c

I Let ct be the current leader’s next cost at time t

I
∑

t ct = total cost
I So total number of changes is ε(total cost)
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Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the
final leader is not necessarily optimal

I Our leader can only be as much worse as the biggest
perturbation

I Because the distribution is exponential, the expected max
perturbation grows logarithmically

I In particular, we get a bound of (1 + ln n)/ε



Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the
final leader is not necessarily optimal

I Our leader can only be as much worse as the biggest
perturbation

I Because the distribution is exponential, the expected max
perturbation grows logarithmically

I In particular, we get a bound of (1 + ln n)/ε



Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the
final leader is not necessarily optimal

I Our leader can only be as much worse as the biggest
perturbation

I Because the distribution is exponential, the expected max
perturbation grows logarithmically

I In particular, we get a bound of (1 + ln n)/ε



Final Leader Cost

This leaves us with the need to bound E [final leader cost], as the
final leader is not necessarily optimal

I Our leader can only be as much worse as the biggest
perturbation

I Because the distribution is exponential, the expected max
perturbation grows logarithmically

I In particular, we get a bound of (1 + ln n)/ε



Tying it Together

Combining the bounds on the number of wrong guesses with the
bound on the error in our final guess, we get

E [total cost](1− ε) ≤ min cost +
ln n

ε

which shows an interesting tradeoff between ε and 1− ε when
balancing the amount of randomness
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Linear Generalization

I Fix some D ⊂ Rn

I At time t, choose some dt ∈ D

I After dt is chosen, a vector st is revealed

I The cost incurred is dt · st
I We wish to compete with the best fixed choice dt = d ∀t
I In the 4-player expert case,

D = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

and the st are the cost vectors
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Algorithm for Linear Generalization

With this generalization, the same algorithm works:

I Choose a random vector pt

I Find the d ∈ D that minimizes d · pt +
∑

i d · si and choose it



Other Problems in this Framework

The linear generalization covers many interesting online
optimization problems, including online shortest path:

I We are given a graph with 2 labeled vertices s and t

I Every round, we pick a path from s to t

I Afterward, all edge weights are revealed

I We wish to minimize the sum of all path lengths

I We are competing against the optimal fixed path choice

I Here d ∈ D is a vector indicating the edges contained in a
path, and st represents the edge weights
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Any Questions?


