CS 101.2: Notes for Lecture 2 (Bandit Problems)

Andreas Krause

January 9, 2009

In these notes we prove logarithmic regret for the UCB 1 algorithm (based on Auer et al, 2002).

1 Notation

- j : Index of slot machine arm (1 to k).
- n : Total number of plays we will make (known and specified in advance)
- t : Total number of plays we did so far
- $X_{j, t}$: Random variable for reward of arm j at time t. All $X_{j, t}$ are possibly continuous, but supported in the interval $[0,1]$ (i.e., they do not take any values outside $[0,1])$. All $X_{j, t}$ are independent.
- $T_{j}(t)$: Number of times arm j pulled during the first t plays. Note that $T_{j}(t)$ is a random quantity.
- $\mu_{j}=\mathbb{E}\left[X_{j, t}\right]$, and $\mu^{*}=\max _{j} \mu_{j}$
- $\Delta_{j}=\mu^{*}-\mu_{j}$, and $\Delta=\min _{j} \Delta_{j}$
- Expected regret after t plays:

$$
R_{t}=\mathbb{E}\left[t \mu^{*}-\sum_{j} T_{j}(t) \mu_{j}\right]=\sum_{j} \mathbb{E}\left[T_{j}(t)\right] \Delta_{j}
$$

- $\bar{X}_{j}(t)$ is the sample average of all rewards obtained from arm j during the first t plays (i.e., if we've observed rewards x_{1}, \ldots, x_{m} where $m=T_{j}(t)$, then $\left.\bar{X}_{j}(t)=\frac{1}{m}\left(x_{1}+\cdots+x_{m}\right)\right)$.

2 The Upper Confidence Band algorithm (UCB1)

- Initially, play each arm once (hence $T_{j}(t) \geq 1$ for all $t \geq k$).
- Loop (for $t=k+1$ to n)
- For each arm j compute "index"

$$
v_{j}=\bar{X}_{j}(t)+c_{j}(t),
$$

where $c_{j}(t)=\sqrt{\frac{\log n}{T_{j}(t)}}$.

- Play the arm with $j^{*}=\operatorname{argmax}_{j} v_{j}$.

3 Analysis

Theorem 1. If $U C B_{1}$ is run with input n, then its expected regret R_{n} is $O\left(\frac{K \log n}{\Delta}\right)$.
Proof. To prove Theorem 1, we will bound $\mathbb{E}\left[T_{j}(n)\right]$ for all arms j. Suppose, at some time $t, U C B_{1}$ pulls a suboptimal arm j. That means, that

$$
\bar{X}_{j}(t)+c_{j}(t) \geq \bar{X}^{*}(t)+c^{*}(t)
$$

Hence, in this case,

$$
\begin{aligned}
\bar{X}_{j}(t)+2 c_{j}(t)-c_{j}(t)+\left(\mu_{j}-\mu_{j}\right) & \geq \bar{X}^{*}(t)+c^{*}(t)+\left(\mu^{*}-\mu^{*}\right) \\
\Leftrightarrow \underbrace{\bar{X}_{j}(t)-\left(\mu_{j}+c_{j}(t)\right)}_{A}+\underbrace{\left(\mu_{j}-\mu^{*}+2 c_{j}(t)\right)}_{-C} & \geq \underbrace{\bar{X}^{*}(t)-\left(\mu^{*}-c^{*}(t)\right)}_{-C}
\end{aligned}
$$

We can see that at least one of A, B or C must be nonnegative, i.e., at least one of the following inequalities must hold:

$$
\begin{array}{r}
\bar{X}_{j}(t) \geq \mu_{j}+c_{j}(t) \\
\bar{X}^{*}(t) \leq \mu^{*}-c^{*}(t) \\
\mu^{*} \geq \mu_{j}+2 c_{j}(t) \tag{3}
\end{array}
$$

In order to bound the probability of (1) and (2), we use the Chernoff-Hoeffding inequality:

Fact 1 (Chernoff-Hoeffding inequality). Let X_{1}, \ldots, X_{n} be independent random variables supported on $[0,1]$, with $\mathbb{E}\left[X_{i}\right]=\mu$. Then, for every $a>0$,

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq \mu+a\right) \leq e^{-2 a^{2} n}
$$

and

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}<\mu-a\right) \leq e^{-2 a^{2} n}
$$

Hence, we can bound the probability of (1) as

$$
P\left(\bar{X}_{j}(t) \geq \mu_{j}+c_{j}(t)\right) \leq e^{-2 c_{j}(t)^{2} T_{j}(t)}=e^{-2 \frac{\log n}{T_{j}(t)} T_{j}(t)}=e^{-2 \log n}=n^{-2}
$$

Similarly,

$$
P\left(\bar{X}^{*}(t) \leq \mu^{*}-c^{*}(t)\right) \leq n^{-2}
$$

Hence, (1) and (2) are very unlikely events. Now, note that whenever $T_{j}(t) \geq \ell=$ $\left\lceil(4 \log n) / \Delta_{j}^{2}\right\rceil$, (3) must be false, since

$$
\mu_{j}+2 c_{j}(t)=\mu_{j}+2 \sqrt{\frac{\log n}{T_{j}(t)}} \leq \mu_{j}+2 \sqrt{\frac{\log n}{\frac{4 \log n}{\Delta_{j}^{2}}}} \leq \mu_{j}+\Delta_{j}=\mu^{*}
$$

Hence, if arm j has been played at least $\ell=O\left(\log _{n} / \Delta_{j}^{2}\right)$ times, then inequality (3) must be false, and hence arm j is pulled with probability at most $O\left(n^{-2}\right)$.

Now we bound $\mathbb{E}\left[T_{j}(n)\right]$. By using conditional expectations, we have (writing T_{j} instead of $T_{j}(n)$ for short)

$$
\mathbb{E}\left[T_{j}\right]=\underbrace{P\left(T_{j} \leq \ell\right)}_{\leq 1} \underbrace{\mathbb{E}\left[T_{j} \mid T_{j} \leq \ell\right]}_{\leq \ell}+\underbrace{P\left(T_{j} \geq \ell\right)}_{\leq 2 n^{-2}} \underbrace{\mathbb{E}\left[T_{j} \mid T_{j} \geq \ell\right]}_{\leq n} \leq \ell+2 n^{-1}
$$

since we have

$$
P\left(T_{j} \geq \ell\right) \leq P(\text { inequality }(1) \text { or }(2) \text { violated }) \leq 2 n^{-2}
$$

4 Some additional remarks

Note that as stated in Section 2, the total number of plays n needs to specified in advance. By setting

$$
c_{t}=\sqrt{\frac{2 \log t}{T_{j}(t)}}
$$

we can avoid this issue. A slightly more complex analysis (of Auer et al '02) shows that in this case after any number of t plays it holds that

$$
R_{t}=O\left(\frac{k \log t}{\Delta}\right)
$$

